1.
i)
The moment generating function (MGF):
m X ( t ) = E e t X m_X(t)=Ee^{tX} m X ( t ) = E e tX
m X ( t ) = ∫ − ∞ ∞ e t x f ( x ) d x = ∫ − ∞ ∞ e t x e − ( x + 11 ) 2 / 98 98 π d x = m_X(t)=\int^{\infin}_{-\infin}e^{tx}f(x)dx=\int^{\infin}_{-\infin}\frac{e^{tx}e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx= m X ( t ) = ∫ − ∞ ∞ e t x f ( x ) d x = ∫ − ∞ ∞ 98 π e t x e − ( x + 11 ) 2 /98 d x =
= e − 121 / 98 98 π ∫ − ∞ ∞ e − ( x 2 + x ( 98 t + 22 ) ) / 98 d x = e − 121 / 98 98 π ⋅ e ( 98 t + 22 ) 2 / 392 98 π = e ( 24.5 t 2 + 11 t ) =\frac{e^{-121/98}}{\sqrt{98\pi}}\int^{\infin}_{-\infin}e^{-(x^2+x(98t+22))/98}dx=\frac{e^{-121/98}}{\sqrt{98\pi}}\cdot e^{(98t+22)^2/392}\sqrt{98\pi}=e^{(24.5t^2+11t)} = 98 π e − 121/98 ∫ − ∞ ∞ e − ( x 2 + x ( 98 t + 22 )) /98 d x = 98 π e − 121/98 ⋅ e ( 98 t + 22 ) 2 /392 98 π = e ( 24.5 t 2 + 11 t )
ii)
P ( − 3 > − X > 13 ) = ∫ − ∞ − 3 f ( − x ) d x + ∫ 13 ∞ f ( − x ) d x = P(-3>-X>13)=\int^{-3}_{-\infin}f(-x)dx+\int^{\infin}_{13}f(-x)dx= P ( − 3 > − X > 13 ) = ∫ − ∞ − 3 f ( − x ) d x + ∫ 13 ∞ f ( − x ) d x =
= ∫ − ∞ − 3 e − ( − x + 11 ) 2 / 98 98 π d x + ∫ 13 ∞ e − ( − x + 11 ) 2 / 98 98 π d x = − ( e r f ( 14 / 98 ) − 1 ) 98 π 2 98 π − ( e r f ( 2 / 98 ) − 1 ) 98 π 2 98 π =\int^{-3}_{-\infin}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx+\int^{\infin}_{13}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx=-\frac{(erf(14/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}}-\frac{(erf(2/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}} = ∫ − ∞ − 3 98 π e − ( − x + 11 ) 2 /98 d x + ∫ 13 ∞ 98 π e − ( − x + 11 ) 2 /98 d x = − 2 98 π ( er f ( 14/ 98 ) − 1 ) 98 π − 2 98 π ( er f ( 2/ 98 ) − 1 ) 98 π
where erf is error function.
e r f ( 14 / 98 ) = 0.95 , e r f ( 2 / 98 ) = 0.22 erf(14/\sqrt{98})=0.95,\ erf(2/\sqrt{98})=0.22 er f ( 14/ 98 ) = 0.95 , er f ( 2/ 98 ) = 0.22
P ( − 3 > − X > 13 ) = 0.025 + 0.390 = 0.415 P(-3>-X>13)=0.025+0.390=0.415 P ( − 3 > − X > 13 ) = 0.025 + 0.390 = 0.415
iii)
P ( ∣ X + 11 ∣ ≥ C ) = 2 ∫ C − 11 ∞ e − ( x + 11 ) 2 / 98 98 π d x = 0.0614 P(|X+11|\ge C)=2\int^{\infin}_{C-11}\frac{e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx=0.0614 P ( ∣ X + 11∣ ≥ C ) = 2 ∫ C − 11 ∞ 98 π e − ( x + 11 ) 2 /98 d x = 0.0614
2 ⋅ − e r f ( ( 2 ( C − 11 ) + 11 2 ) / 14 ) − 1 2 = 0.0614 2\cdot-\frac{erf((\sqrt{2}(C-11)+11\sqrt{2})/14)-1}{2}=0.0614 2 ⋅ − 2 er f (( 2 ( C − 11 ) + 11 2 ) /14 ) − 1 = 0.0614
e r f ( ( 2 ( C − 11 ) + 11 2 ) / 14 ) = 1 − 0.0614 = 0.9386 erf((\sqrt{2}(C-11)+11\sqrt{2})/14)=1-0.0614=0.9386 er f (( 2 ( C − 11 ) + 11 2 ) /14 ) = 1 − 0.0614 = 0.9386
( 2 ( C − 11 ) + 11 2 ) / 14 = 1.323 (\sqrt{2}(C-11)+11\sqrt{2})/14=1.323 ( 2 ( C − 11 ) + 11 2 ) /14 = 1.323
C = 14 ⋅ 1.323 − 11 2 2 + 11 = 13.1 C=\frac{14\cdot 1.323-11\sqrt{2}}{\sqrt{2}}+11=13.1 C = 2 14 ⋅ 1.323 − 11 2 + 11 = 13.1
iv)
Z 0.0031 = − 3.42 Z_{0.0031}=-3.42 Z 0.0031 = − 3.42
− Z 0.0031 = 3.42 -Z_{0.0031}=3.42 − Z 0.0031 = 3.42
x − μ σ = 3.42 \frac{x-\mu}{\sigma}=3.42 σ x − μ = 3.42
μ = − 11 , σ = 7 \mu=-11,\ \sigma=7 μ = − 11 , σ = 7
X = 3.42 σ + μ = 3.42 ⋅ 7 − 11 = 12.94 X=3.42\sigma+\mu=3.42\cdot7-11=12.94 X = 3.42 σ + μ = 3.42 ⋅ 7 − 11 = 12.94
3.
488, 493, 493, 495, 497, 498, 503, 503, 505, 511, 511, 513
m e d i a n = ( 498 + 503 ) / 2 = 500.5 median=(498+503)/2=500.5 m e d ian = ( 498 + 503 ) /2 = 500.5
Decile:
D i = i ( N + 1 ) / 10 D_i=i(N+1)/10 D i = i ( N + 1 ) /10
D 7 = 7 ⋅ ( 12 + 1 ) / 10 = 9.1 D_7=7\cdot (12+1)/10=9.1 D 7 = 7 ⋅ ( 12 + 1 ) /10 = 9.1
Percentile:
0.43 N = 0.43 ⋅ 12 = 5.16 0.43N=0.43\cdot12=5.16 0.43 N = 0.43 ⋅ 12 = 5.16
0.16 ⋅ ( 498 − 497 ) = 0.16 0.16\cdot(498-497)=0.16 0.16 ⋅ ( 498 − 497 ) = 0.16
P 43 = 5 + 0.16 = 5.16 P_{43}=5+0.16=5.16 P 43 = 5 + 0.16 = 5.16
Modes are: 493, 503, 511
The semi-interquartile range is one-half the difference between the first and third quartiles:
I Q R = ( Q 3 − Q 3 ) / 2 = ( 511 − 493 ) / 2 = 9 IQR=(Q_3-Q_3)/2=(511-493)/2=9 I QR = ( Q 3 − Q 3 ) /2 = ( 511 − 493 ) /2 = 9
2.
i)
pdf of the sample median:
q ( x ) = c n [ P ( x m e d ) ( 1 − P ( x m e d ) ) ] ( n − 1 ) / 2 f ( x ) q(x)=c_n[P(x_{med})(1-P(x_{med}))]^{(n-1)/2}f(x) q ( x ) = c n [ P ( x m e d ) ( 1 − P ( x m e d )) ] ( n − 1 ) /2 f ( x )
P ( x m e d ) = 0.5 P(x_{med})=0.5 P ( x m e d ) = 0.5
cn is a coefficient that represents the number of ways a sample of (n-1)/2 values above median and (n-1)/2 below median can be arranged.
c n = 2 ! = 2 c_n=2!=2 c n = 2 ! = 2
q ( x ) = 2 ⋅ [ 0.5 ⋅ ( 1 − 0.5 ) ] ( 5 − 1 ) / 2 e − 2 x = 0.125 e − 2 x q(x)=2\cdot[0.5\cdot(1-0.5)]^{(5-1)/2}e^{-2x}=0.125e^{-2x} q ( x ) = 2 ⋅ [ 0.5 ⋅ ( 1 − 0.5 ) ] ( 5 − 1 ) /2 e − 2 x = 0.125 e − 2 x
The expected value of the median of the sample is equal to the median of the distribution f(x).
P ( x m e d ) = ∫ 0 x m e d f ( t ) d t = ∫ 0 x m e d e − 2 t d t = 0.5 P(x_{med})=\int^{x_{med}}_0f(t)dt=\int^{x_{med}}_0e^{-2t}dt=0.5 P ( x m e d ) = ∫ 0 x m e d f ( t ) d t = ∫ 0 x m e d e − 2 t d t = 0.5
− e − 2 t / 2 ∣ 0 x m e d = − e − 2 x m e d / 2 + 1 / 2 = 0.5 -e^{-2t}/2|^{x_{med}}_0=-e^{-2x_{med}}/2+1/2=0.5 − e − 2 t /2 ∣ 0 x m e d = − e − 2 x m e d /2 + 1/2 = 0.5
E ( X ) = x m e d = ∞ E(X)=x_{med}=\infin E ( X ) = x m e d = ∞
ii)
g 4 ( y ) = 5 ! 3 ! ⋅ 0. 5 3 ⋅ 0.5 e − 2 y = 1.25 e − 2 y g_4(y)=\frac{5!}{3!}\cdot0.5^3\cdot0.5e^{-2y}=1.25e^{-2y} g 4 ( y ) = 3 ! 5 ! ⋅ 0. 5 3 ⋅ 0.5 e − 2 y = 1.25 e − 2 y
P ( Y 4 ≥ 0.5 ) = ∫ 0.5 ∞ g 4 ( y ) d y = 1.25 ∫ 0.5 ∞ e − 2 y d y = P(Y_4\ge0.5)=\int^{\infin}_{0.5}g_4(y)dy=1.25\int^{\infin}_{0.5}e^{-2y}dy= P ( Y 4 ≥ 0.5 ) = ∫ 0.5 ∞ g 4 ( y ) d y = 1.25 ∫ 0.5 ∞ e − 2 y d y =
= − 1.25 e − 2 y / 2 ∣ 0.5 ∞ = 1.25 / ( 2 e ) = 0.2299 =-1.25e^{-2y}/2|^{\infin}_{0.5}=1.25/(2e)=0.2299 = − 1.25 e − 2 y /2 ∣ 0.5 ∞ = 1.25/ ( 2 e ) = 0.2299
Comments