Question #245067

1.

Consider pdf of a Normal variable 𝑿 is defined as 𝒇(𝒙) = (1/√98𝝅)e^-((x+11)^2/98))

i) Find mgf of 𝑿.

ii) Evaluate 𝑷(−𝟑 > −𝑿 > 𝟏𝟑).

iii) Find value of 𝑪 such that 𝑷(|𝑿 + 𝟏𝟏| ≥ 𝑪) = 𝟎. 𝟎𝟔𝟏𝟒.

iv) Find −𝒁𝟎.𝟎𝟎𝟑𝟏 and convert to 𝑿.


2.

Let 𝒀𝟏 < 𝒀𝟐 < 𝒀𝟑 <𝒀𝟒 < 𝒀𝟓 be the order statistics of five independent observations 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒 & 𝑿𝟓 each from distribution with pdf 𝒇(𝒙) = 𝒆-2x; 𝟎 ≤ 𝒙 < ∞.

(i) Find pdf of the sample median and it’s mean.

(ii) Determine 𝑷(𝒀𝟒 ≥ 𝟎. 𝟓). 

where, 𝑮𝒓 (𝒚) = \sum∑(nr ) [𝑭(𝒚)] 𝒓 [𝟏 − 𝑭(𝒚)] 𝒏−𝒓 ,

𝒈𝒓 (𝒚) = (𝒏!/(𝒏−𝒓)!(𝒓−𝟏)!) [𝑭(𝒚)] 𝒓−𝟏 [𝟏 − 𝑭(𝒚)] 𝒏−𝒓𝒇(𝒚) 


3. Let 𝑿 equals weight of a soap. A random sample of size 𝟏𝟐 of 𝑿 yielded with weights 𝟓𝟏𝟑, 𝟒𝟗𝟑, 𝟒𝟗𝟖, 𝟓𝟎𝟑, 𝟒𝟗𝟓, 𝟓𝟏𝟏, 𝟓𝟎𝟓, 𝟒𝟗𝟕, 𝟒𝟖𝟖, 𝟒𝟗𝟑, 𝟓𝟏𝟏 & 𝟓𝟎𝟑

grams respectively. Now order them increasingly and find Median, 𝑫𝟕 and 𝑷𝟒𝟑. Is

there any mode exists? Determine the semi-range of given weights.


1
Expert's answer
2021-10-03T17:46:03-0400

1.

i)

The moment generating function (MGF):

mX(t)=EetXm_X(t)=Ee^{tX}

mX(t)=etxf(x)dx=etxe(x+11)2/9898πdx=m_X(t)=\int^{\infin}_{-\infin}e^{tx}f(x)dx=\int^{\infin}_{-\infin}\frac{e^{tx}e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx=


=e121/9898πe(x2+x(98t+22))/98dx=e121/9898πe(98t+22)2/39298π=e(24.5t2+11t)=\frac{e^{-121/98}}{\sqrt{98\pi}}\int^{\infin}_{-\infin}e^{-(x^2+x(98t+22))/98}dx=\frac{e^{-121/98}}{\sqrt{98\pi}}\cdot e^{(98t+22)^2/392}\sqrt{98\pi}=e^{(24.5t^2+11t)}


ii)

P(3>X>13)=3f(x)dx+13f(x)dx=P(-3>-X>13)=\int^{-3}_{-\infin}f(-x)dx+\int^{\infin}_{13}f(-x)dx=


=3e(x+11)2/9898πdx+13e(x+11)2/9898πdx=(erf(14/98)1)98π298π(erf(2/98)1)98π298π=\int^{-3}_{-\infin}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx+\int^{\infin}_{13}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx=-\frac{(erf(14/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}}-\frac{(erf(2/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}}

where erf is error function.

erf(14/98)=0.95, erf(2/98)=0.22erf(14/\sqrt{98})=0.95,\ erf(2/\sqrt{98})=0.22

P(3>X>13)=0.025+0.390=0.415P(-3>-X>13)=0.025+0.390=0.415


iii)

P(X+11C)=2C11e(x+11)2/9898πdx=0.0614P(|X+11|\ge C)=2\int^{\infin}_{C-11}\frac{e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx=0.0614


2erf((2(C11)+112)/14)12=0.06142\cdot-\frac{erf((\sqrt{2}(C-11)+11\sqrt{2})/14)-1}{2}=0.0614

erf((2(C11)+112)/14)=10.0614=0.9386erf((\sqrt{2}(C-11)+11\sqrt{2})/14)=1-0.0614=0.9386

(2(C11)+112)/14=1.323(\sqrt{2}(C-11)+11\sqrt{2})/14=1.323


C=141.3231122+11=13.1C=\frac{14\cdot 1.323-11\sqrt{2}}{\sqrt{2}}+11=13.1


iv)

Z0.0031=3.42Z_{0.0031}=-3.42

Z0.0031=3.42-Z_{0.0031}=3.42

xμσ=3.42\frac{x-\mu}{\sigma}=3.42

μ=11, σ=7\mu=-11,\ \sigma=7

X=3.42σ+μ=3.42711=12.94X=3.42\sigma+\mu=3.42\cdot7-11=12.94


3.

488, 493, 493, 495, 497, 498, 503, 503, 505, 511, 511, 513

median=(498+503)/2=500.5median=(498+503)/2=500.5


Decile:

Di=i(N+1)/10D_i=i(N+1)/10

D7=7(12+1)/10=9.1D_7=7\cdot (12+1)/10=9.1


Percentile:

0.43N=0.4312=5.160.43N=0.43\cdot12=5.16

0.16(498497)=0.160.16\cdot(498-497)=0.16

P43=5+0.16=5.16P_{43}=5+0.16=5.16


Modes are: 493, 503, 511


The semi-interquartile range is one-half the difference between the first and third quartiles:

IQR=(Q3Q3)/2=(511493)/2=9IQR=(Q_3-Q_3)/2=(511-493)/2=9


2.

i)

pdf of the sample median:

q(x)=cn[P(xmed)(1P(xmed))](n1)/2f(x)q(x)=c_n[P(x_{med})(1-P(x_{med}))]^{(n-1)/2}f(x)

P(xmed)=0.5P(x_{med})=0.5

cn is a coefficient that represents the number of ways a sample of (n-1)/2 values above median and (n-1)/2 below median can be arranged.

cn=2!=2c_n=2!=2

q(x)=2[0.5(10.5)](51)/2e2x=0.125e2xq(x)=2\cdot[0.5\cdot(1-0.5)]^{(5-1)/2}e^{-2x}=0.125e^{-2x}


The expected value of the median of the sample is equal to the median of the distribution f(x).

P(xmed)=0xmedf(t)dt=0xmede2tdt=0.5P(x_{med})=\int^{x_{med}}_0f(t)dt=\int^{x_{med}}_0e^{-2t}dt=0.5


e2t/20xmed=e2xmed/2+1/2=0.5-e^{-2t}/2|^{x_{med}}_0=-e^{-2x_{med}}/2+1/2=0.5

E(X)=xmed=E(X)=x_{med}=\infin


ii)

g4(y)=5!3!0.530.5e2y=1.25e2yg_4(y)=\frac{5!}{3!}\cdot0.5^3\cdot0.5e^{-2y}=1.25e^{-2y}


P(Y40.5)=0.5g4(y)dy=1.250.5e2ydy=P(Y_4\ge0.5)=\int^{\infin}_{0.5}g_4(y)dy=1.25\int^{\infin}_{0.5}e^{-2y}dy=


=1.25e2y/20.5=1.25/(2e)=0.2299=-1.25e^{-2y}/2|^{\infin}_{0.5}=1.25/(2e)=0.2299


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS