1.
Consider pdf of a Normal variable ๐ฟ is defined as ๐(๐) = (1/โ98๐ )e^-((x+11)^2/98))
i) Find mgf of ๐ฟ.
ii) Evaluate ๐ท(โ๐ > โ๐ฟ > ๐๐).
iii) Find value of ๐ช such that ๐ท(|๐ฟ + ๐๐| โฅ ๐ช) = ๐. ๐๐๐๐.
iv) Find โ๐๐.๐๐๐๐ and convert to ๐ฟ.
2.
Let ๐๐ < ๐๐ < ๐๐ <๐๐ < ๐๐ be the order statistics of five independent observations ๐ฟ๐, ๐ฟ๐, ๐ฟ๐, ๐ฟ๐ & ๐ฟ๐ each from distribution with pdf ๐(๐) = ๐-2x; ๐ โค ๐ < โ.
(i) Find pdf of the sample median and itโs mean.
(ii) Determine ๐ท(๐๐ โฅ ๐. ๐).ย
where, ๐ฎ๐ (๐) = \sumโ(nr ) [๐ญ(๐)] ๐ [๐ โ ๐ญ(๐)] ๐โ๐ ,
๐๐ (๐) = (๐!/(๐โ๐)!(๐โ๐)!) [๐ญ(๐)] ๐โ๐ [๐ โ ๐ญ(๐)] ๐โ๐๐(๐)ย
3. Let ๐ฟ equals weight of a soap. A random sample of size ๐๐ of ๐ฟ yielded with weights ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐, ๐๐๐ & ๐๐๐
grams respectively. Now order them increasingly and find Median, ๐ซ๐ and ๐ท๐๐. Is
there any mode exists? Determine the semi-range of given weights.
1.
i)
The moment generating function (MGF):
"m_X(t)=Ee^{tX}"
"m_X(t)=\\int^{\\infin}_{-\\infin}e^{tx}f(x)dx=\\int^{\\infin}_{-\\infin}\\frac{e^{tx}e^{-(x+11)^2\/98}}{\\sqrt{98\\pi}}dx="
"=\\frac{e^{-121\/98}}{\\sqrt{98\\pi}}\\int^{\\infin}_{-\\infin}e^{-(x^2+x(98t+22))\/98}dx=\\frac{e^{-121\/98}}{\\sqrt{98\\pi}}\\cdot e^{(98t+22)^2\/392}\\sqrt{98\\pi}=e^{(24.5t^2+11t)}"
ii)
"P(-3>-X>13)=\\int^{-3}_{-\\infin}f(-x)dx+\\int^{\\infin}_{13}f(-x)dx="
"=\\int^{-3}_{-\\infin}\\frac{e^{-(-x+11)^2\/98}}{\\sqrt{98\\pi}}dx+\\int^{\\infin}_{13}\\frac{e^{-(-x+11)^2\/98}}{\\sqrt{98\\pi}}dx=-\\frac{(erf(14\/\\sqrt{98})-1)\\sqrt{98\\pi}}{2\\sqrt{98\\pi}}-\\frac{(erf(2\/\\sqrt{98})-1)\\sqrt{98\\pi}}{2\\sqrt{98\\pi}}"
where erf is error function.
"erf(14\/\\sqrt{98})=0.95,\\ erf(2\/\\sqrt{98})=0.22"
"P(-3>-X>13)=0.025+0.390=0.415"
iii)
"P(|X+11|\\ge C)=2\\int^{\\infin}_{C-11}\\frac{e^{-(x+11)^2\/98}}{\\sqrt{98\\pi}}dx=0.0614"
"2\\cdot-\\frac{erf((\\sqrt{2}(C-11)+11\\sqrt{2})\/14)-1}{2}=0.0614"
"erf((\\sqrt{2}(C-11)+11\\sqrt{2})\/14)=1-0.0614=0.9386"
"(\\sqrt{2}(C-11)+11\\sqrt{2})\/14=1.323"
"C=\\frac{14\\cdot 1.323-11\\sqrt{2}}{\\sqrt{2}}+11=13.1"
iv)
"Z_{0.0031}=-3.42"
"-Z_{0.0031}=3.42"
"\\frac{x-\\mu}{\\sigma}=3.42"
"\\mu=-11,\\ \\sigma=7"
"X=3.42\\sigma+\\mu=3.42\\cdot7-11=12.94"
3.
488, 493, 493, 495, 497, 498, 503, 503, 505, 511, 511, 513
"median=(498+503)\/2=500.5"
Decile:
"D_i=i(N+1)\/10"
"D_7=7\\cdot (12+1)\/10=9.1"
Percentile:
"0.43N=0.43\\cdot12=5.16"
"0.16\\cdot(498-497)=0.16"
"P_{43}=5+0.16=5.16"
Modes are: 493, 503, 511
The semi-interquartile range isย one-half the difference between the first and third quartiles:
"IQR=(Q_3-Q_3)\/2=(511-493)\/2=9"
2.
i)
pdf of the sample median:
"q(x)=c_n[P(x_{med})(1-P(x_{med}))]^{(n-1)\/2}f(x)"
"P(x_{med})=0.5"
cnย is a coefficient that represents the number of ways a sample of (n-1)/2 values above median and (n-1)/2 below median can be arranged.
"c_n=2!=2"
"q(x)=2\\cdot[0.5\\cdot(1-0.5)]^{(5-1)\/2}e^{-2x}=0.125e^{-2x}"
The expected value of the median of the sample is equal to the median of the distribution f(x).
"P(x_{med})=\\int^{x_{med}}_0f(t)dt=\\int^{x_{med}}_0e^{-2t}dt=0.5"
"-e^{-2t}\/2|^{x_{med}}_0=-e^{-2x_{med}}\/2+1\/2=0.5"
"E(X)=x_{med}=\\infin"
ii)
"g_4(y)=\\frac{5!}{3!}\\cdot0.5^3\\cdot0.5e^{-2y}=1.25e^{-2y}"
"P(Y_4\\ge0.5)=\\int^{\\infin}_{0.5}g_4(y)dy=1.25\\int^{\\infin}_{0.5}e^{-2y}dy="
"=-1.25e^{-2y}\/2|^{\\infin}_{0.5}=1.25\/(2e)=0.2299"
Comments
Leave a comment