Consider the pdf of a Normal variable πΏ is defined as "f(x)= (1\/\u221a(98pi)^e^-((x+11)^2\/98)"
i) Find the mgf of πΏ.
ii) Evaluate π·(βπ > βπΏ > ππ).
iii) Find the value of πͺ such that π·(|πΏ + ππ| β₯ πͺ) = π. ππππ.
iv) Find βππ.ππππ and convert to πΏ.
i)
Then "\\mu=-11, \\sigma^2=49."
The moment generating function corresponding to the normal probability density function"N(x; \u00b5, \u03c3^2)" is the function "M_{x}(t) = exp\\{{\\mu t + \u03c3^2t ^2\/2}\\}"
ii)
"=P(X<3)-P(X\\leq-13)"
"=P(Z<\\dfrac{3-(-11)}{7})-P(Z\\leq\\dfrac{-13-(-11)}{7})"
"=P(Z<2)-P(Z\\leq-0.2857)"
"=0.9772499-0.3875485=0.589701"
iii)
"P(|X+C|\\geq11)=0.0614""P(X\\leq-11-C)=0.0307"
"P(Z\\leq\\dfrac{-11-C-(-11)}{7})=0.0307"
"P(Z\\leq\\dfrac{-C}{7})=0.0307"
"\\dfrac{-C}{7}=-1.870604"
"C=13.094228"
iv)
"z=-2.737012"
"-z=2.737012"
"\\dfrac{x-(-11)}{7}=-2.737012"
"x=-30.159"
"-x=30.159"
Comments
Leave a comment