i)
N(x;μ,σ2)=2πσ21e−21(x−μ)2/σ2 Then μ=−11,σ2=49.
The moment generating function corresponding to the normal probability density functionN(x;µ,σ2) is the function Mx(t)=exp{μt+σ2t2/2}
Mx(t)=exp{−11t+49t2/2}
ii)
P(−3>−X>13)=P(−13<X<3)
=P(X<3)−P(X≤−13)
=P(Z<73−(−11))−P(Z≤7−13−(−11))
=P(Z<2)−P(Z≤−0.2857)
=0.9772499−0.3875485=0.589701 iii)
P(∣X+C∣≥11)=0.0614
P(X≤−11−C)=0.0307
P(Z≤7−11−C−(−11))=0.0307
P(Z≤7−C)=0.0307
7−C=−1.870604 C=13.094228
iv)
P(Z≤z)=0.0031
z=−2.737012
−z=2.737012
7x−(−11)=−2.737012
x=−30.159
−x=30.159
Comments