Question #245063

Consider the pdf of a Normal variable 𝑿 is defined as f(x)= (1/√(98pi)^e^-((x+11)^2/98)

i) Find the mgf of 𝑿.

ii) Evaluate 𝑷(−𝟑 > −𝑿 > 𝟏𝟑).

iii) Find the value of 𝑪 such that 𝑷(|𝑿 + 𝟏𝟏| ≥ 𝑪) = 𝟎. 𝟎𝟔𝟏𝟒.

iv) Find −𝒁𝟎.𝟎𝟎𝟑𝟏 and convert to 𝑿.

1
Expert's answer
2021-10-01T16:25:17-0400

i)


N(x;μ,σ2)=12πσ2e12(xμ)2/σ2N(x; \mu,\sigma^2) =\dfrac{1}{\sqrt{2\pi\sigma^2}} e^{-{1 \over 2}(x-\mu)^2/\sigma^2}

Then μ=11,σ2=49.\mu=-11, \sigma^2=49.

The moment generating function corresponding to the normal probability density functionN(x;µ,σ2)N(x; µ, σ^2) is the function Mx(t)=exp{μt+σ2t2/2}M_{x}(t) = exp\{{\mu t + σ^2t ^2/2}\}


Mx(t)=exp{11t+49t2/2}M_{x}(t) = exp\{{-11 t + 49t ^2/2}\}

ii)


P(3>X>13)=P(13<X<3)P(-3>-X>13)=P(-13<X<3)

=P(X<3)P(X13)=P(X<3)-P(X\leq-13)

=P(Z<3(11)7)P(Z13(11)7)=P(Z<\dfrac{3-(-11)}{7})-P(Z\leq\dfrac{-13-(-11)}{7})

=P(Z<2)P(Z0.2857)=P(Z<2)-P(Z\leq-0.2857)

=0.97724990.3875485=0.589701=0.9772499-0.3875485=0.589701

iii)

P(X+C11)=0.0614P(|X+C|\geq11)=0.0614

P(X11C)=0.0307P(X\leq-11-C)=0.0307

P(Z11C(11)7)=0.0307P(Z\leq\dfrac{-11-C-(-11)}{7})=0.0307

P(ZC7)=0.0307P(Z\leq\dfrac{-C}{7})=0.0307

C7=1.870604\dfrac{-C}{7}=-1.870604

C=13.094228C=13.094228


iv)


P(Zz)=0.0031P(Z\leq z)=0.0031

z=2.737012z=-2.737012

z=2.737012-z=2.737012

x(11)7=2.737012\dfrac{x-(-11)}{7}=-2.737012

x=30.159x=-30.159

x=30.159-x=30.159



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS