Question #245039
The probability of an integrated circuit passing a quality test is 0.86. In a batch of 10 integrated circuits find the probabilities that
2 will fail
8 will pass
at least 2 will fail
fewer than 2 will fail.
1
Expert's answer
2021-10-01T15:07:38-0400

Let X=X= the number of integrated circuits which will pass a quality test: XBin(n,p).X\sim Bin(n, p).

Given n=10,p=0.86,q=1p=10.86=0.14.n=10, p=0.86, q=1-p=1-0.86=0.14.

a)


P(2 will fail)=P(X=8)P( \text{2 will fail})=P(X=8)

=(108)(0.86)8(0.14)102=0.26391=\dbinom{10}{8}(0.86)^8(0.14)^{10-2}=0.26391

b)


P(8 will pass)=P(X=8)P( \text{8 will pass})=P(X=8)

=(108)(0.86)8(0.14)102=0.26391=\dbinom{10}{8}(0.86)^8(0.14)^{10-2}=0.26391



c)


P(at least 2 will fall)=P(X8)P( \text{at least 2 will fall})=P(X\leq8)

=1(P(X=9)+P(X=10))=1-(P(X=9)+P(X=10))




=1(109)(0.86)9(0.14)109=1-\dbinom{10}{9}(0.86)^9(0.14)^{10-9}

(1010)(0.86)10(0.14)1010-\dbinom{10}{10}(0.86)^{10}(0.14)^{10-10}

=0.41844=0.41844

d)


P(fewer than 2 will fail)=P(X>8)P( \text{fewer than 2 will fail})=P(X>8)

=P(X=9)+P(X=10)=P(X=9)+P(X=10)




=(109)(0.86)9(0.14)109+(1010)(0.86)10(0.14)1010=\dbinom{10}{9}(0.86)^9(0.14)^{10-9}+\dbinom{10}{10}(0.86)^{10}(0.14)^{10-10}

=0.58156=0.58156


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS