i)
The moment generating function (MGF):
mX(t)=EetX
mX(t)=∫−∞∞etxf(x)dx=∫−∞∞98πetxe−(x+11)2/98dx=
=98πe−121/98∫−∞∞e−(x2+x(98t+22))/98dx=98πe−121/98⋅e(98t+22)2/39298π=e(24.5t2+11t)
ii)
P(−3>−X>13)=∫−∞−3f(−x)dx+∫13∞f(−x)dx=
=∫−∞−398πe−(−x+11)2/98dx+∫13∞98πe−(−x+11)2/98dx=−298π(erf(14/98)−1)98π−298π(erf(2/98)−1)98π
where erf is error function.
erf(14/98)=0.95, erf(2/98)=0.22
P(−3>−X>13)=0.025+0.390=0.415
iii)
P(∣X+11∣≥C)=2∫C−11∞98πe−(x+11)2/98dx=0.0614
2⋅−2erf((2(C−11)+112)/14)−1=0.0614
erf((2(C−11)+112)/14)=1−0.0614=0.9386
(2(C−11)+112)/14=1.323
C=214⋅1.323−112+11=13.1
iv)
Z0.0031=−3.42
−Z0.0031=3.42
σx−μ=3.42
μ=−11, σ=7
X=3.42σ+μ=3.42⋅7−11=12.94
Comments