Answer to Question #245064 in Statistics and Probability for mechanix

Question #245064

Consider the pdf of a Normal variable 𝑿 is defined as 𝒇(𝒙) = (1/√98𝝅)e^-((x+11)^2/98))

i) Find the mgf of 𝑿.

ii) Evaluate 𝑷(βˆ’πŸ‘ > βˆ’π‘Ώ > πŸπŸ‘).

iii) Find the value of π‘ͺ such that 𝑷(|𝑿 + 𝟏𝟏| β‰₯ π‘ͺ) = 𝟎. πŸŽπŸ”πŸπŸ’.

iv) Find βˆ’π’πŸŽ.πŸŽπŸŽπŸ‘πŸ and convert to 𝑿.

1
Expert's answer
2021-10-03T17:44:52-0400

i)

The moment generating function (MGF):

mX(t)=EetXm_X(t)=Ee^{tX}

mX(t)=βˆ«βˆ’βˆžβˆžetxf(x)dx=βˆ«βˆ’βˆžβˆžetxeβˆ’(x+11)2/9898Ο€dx=m_X(t)=\int^{\infin}_{-\infin}e^{tx}f(x)dx=\int^{\infin}_{-\infin}\frac{e^{tx}e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx=


=eβˆ’121/9898Ο€βˆ«βˆ’βˆžβˆžeβˆ’(x2+x(98t+22))/98dx=eβˆ’121/9898Ο€β‹…e(98t+22)2/39298Ο€=e(24.5t2+11t)=\frac{e^{-121/98}}{\sqrt{98\pi}}\int^{\infin}_{-\infin}e^{-(x^2+x(98t+22))/98}dx=\frac{e^{-121/98}}{\sqrt{98\pi}}\cdot e^{(98t+22)^2/392}\sqrt{98\pi}=e^{(24.5t^2+11t)}


ii)

P(βˆ’3>βˆ’X>13)=βˆ«βˆ’βˆžβˆ’3f(βˆ’x)dx+∫13∞f(βˆ’x)dx=P(-3>-X>13)=\int^{-3}_{-\infin}f(-x)dx+\int^{\infin}_{13}f(-x)dx=


=βˆ«βˆ’βˆžβˆ’3eβˆ’(βˆ’x+11)2/9898Ο€dx+∫13∞eβˆ’(βˆ’x+11)2/9898Ο€dx=βˆ’(erf(14/98)βˆ’1)98Ο€298Ο€βˆ’(erf(2/98)βˆ’1)98Ο€298Ο€=\int^{-3}_{-\infin}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx+\int^{\infin}_{13}\frac{e^{-(-x+11)^2/98}}{\sqrt{98\pi}}dx=-\frac{(erf(14/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}}-\frac{(erf(2/\sqrt{98})-1)\sqrt{98\pi}}{2\sqrt{98\pi}}

where erf is error function.

erf(14/98)=0.95, erf(2/98)=0.22erf(14/\sqrt{98})=0.95,\ erf(2/\sqrt{98})=0.22

P(βˆ’3>βˆ’X>13)=0.025+0.390=0.415P(-3>-X>13)=0.025+0.390=0.415


iii)

P(∣X+11∣β‰₯C)=2∫Cβˆ’11∞eβˆ’(x+11)2/9898Ο€dx=0.0614P(|X+11|\ge C)=2\int^{\infin}_{C-11}\frac{e^{-(x+11)^2/98}}{\sqrt{98\pi}}dx=0.0614


2β‹…βˆ’erf((2(Cβˆ’11)+112)/14)βˆ’12=0.06142\cdot-\frac{erf((\sqrt{2}(C-11)+11\sqrt{2})/14)-1}{2}=0.0614

erf((2(Cβˆ’11)+112)/14)=1βˆ’0.0614=0.9386erf((\sqrt{2}(C-11)+11\sqrt{2})/14)=1-0.0614=0.9386

(2(Cβˆ’11)+112)/14=1.323(\sqrt{2}(C-11)+11\sqrt{2})/14=1.323


C=14β‹…1.323βˆ’1122+11=13.1C=\frac{14\cdot 1.323-11\sqrt{2}}{\sqrt{2}}+11=13.1


iv)

Z0.0031=βˆ’3.42Z_{0.0031}=-3.42

βˆ’Z0.0031=3.42-Z_{0.0031}=3.42

xβˆ’ΞΌΟƒ=3.42\frac{x-\mu}{\sigma}=3.42

ΞΌ=βˆ’11, Οƒ=7\mu=-11,\ \sigma=7

X=3.42Οƒ+ΞΌ=3.42β‹…7βˆ’11=12.94X=3.42\sigma+\mu=3.42\cdot7-11=12.94


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment