Consider the pdf of a Normal variable πΏ is defined as π(π) = (1/β98π )e^-((x+11)^2/98))
i) Find the mgf of πΏ.
ii) Evaluate π·(βπ > βπΏ > ππ).
iii) Find the value of πͺ such that π·(|πΏ + ππ| β₯ πͺ) = π. ππππ.
iv) Find βππ.ππππ and convert to πΏ.
i)
The moment generating function (MGF):
"m_X(t)=Ee^{tX}"
"m_X(t)=\\int^{\\infin}_{-\\infin}e^{tx}f(x)dx=\\int^{\\infin}_{-\\infin}\\frac{e^{tx}e^{-(x+11)^2\/98}}{\\sqrt{98\\pi}}dx="
"=\\frac{e^{-121\/98}}{\\sqrt{98\\pi}}\\int^{\\infin}_{-\\infin}e^{-(x^2+x(98t+22))\/98}dx=\\frac{e^{-121\/98}}{\\sqrt{98\\pi}}\\cdot e^{(98t+22)^2\/392}\\sqrt{98\\pi}=e^{(24.5t^2+11t)}"
ii)
"P(-3>-X>13)=\\int^{-3}_{-\\infin}f(-x)dx+\\int^{\\infin}_{13}f(-x)dx="
"=\\int^{-3}_{-\\infin}\\frac{e^{-(-x+11)^2\/98}}{\\sqrt{98\\pi}}dx+\\int^{\\infin}_{13}\\frac{e^{-(-x+11)^2\/98}}{\\sqrt{98\\pi}}dx=-\\frac{(erf(14\/\\sqrt{98})-1)\\sqrt{98\\pi}}{2\\sqrt{98\\pi}}-\\frac{(erf(2\/\\sqrt{98})-1)\\sqrt{98\\pi}}{2\\sqrt{98\\pi}}"
where erf is error function.
"erf(14\/\\sqrt{98})=0.95,\\ erf(2\/\\sqrt{98})=0.22"
"P(-3>-X>13)=0.025+0.390=0.415"
iii)
"P(|X+11|\\ge C)=2\\int^{\\infin}_{C-11}\\frac{e^{-(x+11)^2\/98}}{\\sqrt{98\\pi}}dx=0.0614"
"2\\cdot-\\frac{erf((\\sqrt{2}(C-11)+11\\sqrt{2})\/14)-1}{2}=0.0614"
"erf((\\sqrt{2}(C-11)+11\\sqrt{2})\/14)=1-0.0614=0.9386"
"(\\sqrt{2}(C-11)+11\\sqrt{2})\/14=1.323"
"C=\\frac{14\\cdot 1.323-11\\sqrt{2}}{\\sqrt{2}}+11=13.1"
iv)
"Z_{0.0031}=-3.42"
"-Z_{0.0031}=3.42"
"\\frac{x-\\mu}{\\sigma}=3.42"
"\\mu=-11,\\ \\sigma=7"
"X=3.42\\sigma+\\mu=3.42\\cdot7-11=12.94"
Comments
Leave a comment