Class3−55−77−99−1111−13f53040205n=100 x 4681012 f(x) 2018032020060∑f(x)=780f(x2)80108025602000720∑f(x2)=6440cf5357595100
(a)
mean=xˉ=n∑ifi(xi)=100780=7.8 (b)
σ2=n∑ifi(xi)2−(∑ifi(xi))2
=1006440−(780)2=3.56
σ=3.56≈1.8868 (c)
Maximum frequency is 40. The mode class is 7-9.
L= lower boundary point of mode class =7
f1=frequency of the mode class =40
f0= frequency of the preceding class =30
f2= frequency of the succedding class =20
c= class length of mode class =2
mode=Z=L+(2f1−f0−f2f1−f0)⋅c
=7+(2(40)−30−2040−30)⋅2≈7.6667
(d)
value of (n/2)th observation = value of (100/2)th observation =
value of (50)th observation
From the column of cumulative frequency cf, we find that the (50)th observation lies in the class 7-9.
The median class is 7-9.
L= lower boundary point of median class =7
n= Total frequency =100
cf= Cumulative frequency of the class preceding the median class =35
f= Frequency of the median class =40
c= class length of median class =2
median=M=L+(f2n−cf)⋅c
=7+(4050−35)⋅2=7.75 (e)
coefficient of variation =xˉσ⋅100%=7.81.8868⋅100%≈24.19%
Comments