Question #237194

The following table gives the grouped data on the weights of all 100 babies born at Clinic last year.

Weight (Units) Number of babies

3 to less than 5 5

5 to less than 7 30

7 to less than 9 40

9 to less than 11 20

11 to less than 13 5

(a) Calculate the mean

(b) Calculate the variance and standard deviation

(c) Calculate the mode

(d) Calculate the median

(e) Calculate the coefficient of variation


1
Expert's answer
2021-09-15T02:57:52-0400
Classf  x   f(x) f(x2)cf35542080557306180108035794083202560759112010200200095111351260720100nf(x)f(x2)=100=780=6440\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} Class & f & \ \ x\ \ & \ f(x)\ & f( x^2) & cf\\ \hline 3-5 & 5 & 4 & 20 & 80 & 5\\ \hdashline 5-7 & 30 & 6 & 180 & 1080 & 35\\ \hdashline 7-9 & 40 & 8 & 320 & 2560 & 75\\ \hdashline 9-11 & 20 & 10 & 200 & 2000 & 95\\ \hdashline 11-13 & 5 & 12 & 60 & 720 & 100\\ \hdashline & n & & \sum f (x) & \sum f (x^2) & & \\ & =100 & & =780 & =6440 & \\ \end{array}

(a)


mean=xˉ=ifi(xi)n=780100=7.8mean=\bar{x}=\dfrac{\sum_if_i(x_i)}{n}=\dfrac{780}{100}=7.8

(b)


σ2=ifi(xi)2(ifi(xi))2n\sigma^2=\dfrac{\sum_if_i(x_i)^2-(\sum_if_i(x_i))^2}{n}

=6440(780)2100=3.56=\dfrac{6440-(780)^2}{100}=3.56

σ=3.561.8868\sigma=\sqrt{3.56}\approx1.8868

(c)

Maximum frequency is 40. The mode class is 7-9.

L=L = lower boundary point of mode class =7=7

f1=f_1=frequency of the mode class =40=40

f0=f_0=  frequency of the preceding class =30=30

f2=f_2= frequency of the succedding class =20=20

c=c=  class length of mode class =2=2


mode=Z=L+(f1f02f1f0f2)cmode=Z=L+(\dfrac{f_1-f_0}{2f_1-f_0-f_2})\cdot c

=7+(40302(40)3020)27.6667=7+(\dfrac{40-30}{2(40)-30-20})\cdot2\approx7.6667

(d)

value of (n/2)th(n/2)th  observation == value of (100/2)th(100/2)th  observation ==

value of (50)th(50)th  observation

From the column of cumulative frequency cf,cf, we find that the (50)th(50)th  observation lies in the class 7-9.

The median class is 7-9.

L=L= lower boundary point of median class =7=7

n=n= Total frequency =100=100

cf=cf= Cumulative frequency of the class preceding the median class =35=35

f=f= Frequency of the median class =40=40

c=c= class length of median class =2=2


median=M=L+(n2cff)cmedian=M=L+(\dfrac{\dfrac{n}{2}-cf}{f})\cdot c

=7+(503540)2=7.75=7+(\dfrac{50-35}{40})\cdot 2=7.75

(e)

coefficient of variation =σxˉ100%=1.88687.8100%24.19%=\dfrac{\sigma}{\bar{x}}\cdot100\%=\dfrac{1.8868}{7.8}\cdot100\%\approx24.19\%



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS