C l a s s f x f ( x ) f ( x 2 ) c f 3 − 5 5 4 20 80 5 5 − 7 30 6 180 1080 35 7 − 9 40 8 320 2560 75 9 − 11 20 10 200 2000 95 11 − 13 5 12 60 720 100 n ∑ f ( x ) ∑ f ( x 2 ) = 100 = 780 = 6440 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
Class & f & \ \ x\ \ & \ f(x)\ & f( x^2) & cf\\
\hline
3-5 & 5 & 4 & 20 & 80 & 5\\
\hdashline
5-7 & 30 & 6 & 180 & 1080 & 35\\
\hdashline
7-9 & 40 & 8 & 320 & 2560 & 75\\
\hdashline
9-11 & 20 & 10 & 200 & 2000 & 95\\
\hdashline
11-13 & 5 & 12 & 60 & 720 & 100\\
\hdashline
& n & & \sum f (x) & \sum f
(x^2) & & \\
& =100 & & =780 & =6440 & \\
\end{array} Cl a ss 3 − 5 5 − 7 7 − 9 9 − 11 11 − 13 f 5 30 40 20 5 n = 100 x 4 6 8 10 12 f ( x ) 20 180 320 200 60 ∑ f ( x ) = 780 f ( x 2 ) 80 1080 2560 2000 720 ∑ f ( x 2 ) = 6440 c f 5 35 75 95 100
(a)
m e a n = x ˉ = ∑ i f i ( x i ) n = 780 100 = 7.8 mean=\bar{x}=\dfrac{\sum_if_i(x_i)}{n}=\dfrac{780}{100}=7.8 m e an = x ˉ = n ∑ i f i ( x i ) = 100 780 = 7.8 (b)
σ 2 = ∑ i f i ( x i ) 2 − ( ∑ i f i ( x i ) ) 2 n \sigma^2=\dfrac{\sum_if_i(x_i)^2-(\sum_if_i(x_i))^2}{n} σ 2 = n ∑ i f i ( x i ) 2 − ( ∑ i f i ( x i ) ) 2
= 6440 − ( 780 ) 2 100 = 3.56 =\dfrac{6440-(780)^2}{100}=3.56 = 100 6440 − ( 780 ) 2 = 3.56
σ = 3.56 ≈ 1.8868 \sigma=\sqrt{3.56}\approx1.8868 σ = 3.56 ≈ 1.8868 (c)
Maximum frequency is 40. The mode class is 7-9.
L = L = L = lower boundary point of mode class = 7 =7 = 7
f 1 = f_1= f 1 = frequency of the mode class = 40 =40 = 40
f 0 = f_0= f 0 = frequency of the preceding class = 30 =30 = 30
f 2 = f_2= f 2 = frequency of the succedding class = 20 =20 = 20
c = c= c = class length of mode class = 2 =2 = 2
m o d e = Z = L + ( f 1 − f 0 2 f 1 − f 0 − f 2 ) ⋅ c mode=Z=L+(\dfrac{f_1-f_0}{2f_1-f_0-f_2})\cdot c m o d e = Z = L + ( 2 f 1 − f 0 − f 2 f 1 − f 0 ) ⋅ c
= 7 + ( 40 − 30 2 ( 40 ) − 30 − 20 ) ⋅ 2 ≈ 7.6667 =7+(\dfrac{40-30}{2(40)-30-20})\cdot2\approx7.6667 = 7 + ( 2 ( 40 ) − 30 − 20 40 − 30 ) ⋅ 2 ≈ 7.6667
(d)
value of ( n / 2 ) t h (n/2)th ( n /2 ) t h observation = = = value of ( 100 / 2 ) t h (100/2)th ( 100/2 ) t h observation = = =
value of ( 50 ) t h (50)th ( 50 ) t h observation
From the column of cumulative frequency c f , cf, c f , we find that the ( 50 ) t h (50)th ( 50 ) t h observation lies in the class 7-9.
The median class is 7-9.
L = L= L = lower boundary point of median class = 7 =7 = 7
n = n= n = Total frequency = 100 =100 = 100
c f = cf= c f = Cumulative frequency of the class preceding the median class = 35 =35 = 35
f = f= f = Frequency of the median class = 40 =40 = 40
c = c= c = class length of median class = 2 =2 = 2
m e d i a n = M = L + ( n 2 − c f f ) ⋅ c median=M=L+(\dfrac{\dfrac{n}{2}-cf}{f})\cdot c m e d ian = M = L + ( f 2 n − c f ) ⋅ c
= 7 + ( 50 − 35 40 ) ⋅ 2 = 7.75 =7+(\dfrac{50-35}{40})\cdot 2=7.75 = 7 + ( 40 50 − 35 ) ⋅ 2 = 7.75 (e)
coefficient of variation = σ x ˉ ⋅ 100 % = 1.8868 7.8 ⋅ 100 % ≈ 24.19 % =\dfrac{\sigma}{\bar{x}}\cdot100\%=\dfrac{1.8868}{7.8}\cdot100\%\approx24.19\% = x ˉ σ ⋅ 100% = 7.8 1.8868 ⋅ 100% ≈ 24.19%
Comments