write down the joint probability density function of the bivariate normal distribution for the random variables x1 and x2, defining all parameters
"f_{X_1X_2}(x_1.x_2)=\\frac{1}{2\\pi \\sigma_{X_1}\\sigma_{X_2}\\sqrt{1-\\rho^2}}\\cdot exp\\{-\\frac{1}{2(1-\\rho^2)}[(\\frac{x_1-\\mu_{X_1}}{\\sigma_{X_1}})^2+(\\frac{x_2-\\mu_{X_2}}{\\sigma_{X_2}})^2-"
"-2\\rho \\frac{(x-\\mu_{X_1})(x_2-\\mu_{X_2})}{\\sigma_{X_1}\\sigma_{X_2}}]\\}"
where "\\mu_{X_1},\\ \\mu_{X_2}" are means,
"\\sigma_{X_1},\\ \\sigma_{X_1}" are standard deviations,
"\\rho" is correlation coefficient.
Comments
Leave a comment