write down the joint probability density function of the bivariate normal distribution for the random variables x1 and x2, defining all parameters
fX1X2(x1.x2)=12πσX1σX21−ρ2⋅exp{−12(1−ρ2)[(x1−μX1σX1)2+(x2−μX2σX2)2−f_{X_1X_2}(x_1.x_2)=\frac{1}{2\pi \sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}\cdot exp\{-\frac{1}{2(1-\rho^2)}[(\frac{x_1-\mu_{X_1}}{\sigma_{X_1}})^2+(\frac{x_2-\mu_{X_2}}{\sigma_{X_2}})^2-fX1X2(x1.x2)=2πσX1σX21−ρ21⋅exp{−2(1−ρ2)1[(σX1x1−μX1)2+(σX2x2−μX2)2−
−2ρ(x−μX1)(x2−μX2)σX1σX2]}-2\rho \frac{(x-\mu_{X_1})(x_2-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}]\}−2ρσX1σX2(x−μX1)(x2−μX2)]}
where μX1, μX2\mu_{X_1},\ \mu_{X_2}μX1, μX2 are means,
σX1, σX1\sigma_{X_1},\ \sigma_{X_1}σX1, σX1 are standard deviations,
ρ\rhoρ is correlation coefficient.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments