Question #237149

write down the joint probability density function of the bivariate normal distribution for the random variables x1 and x2, defining all parameters


1
Expert's answer
2021-10-04T19:38:12-0400

fX1X2(x1.x2)=12πσX1σX21ρ2exp{12(1ρ2)[(x1μX1σX1)2+(x2μX2σX2)2f_{X_1X_2}(x_1.x_2)=\frac{1}{2\pi \sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}\cdot exp\{-\frac{1}{2(1-\rho^2)}[(\frac{x_1-\mu_{X_1}}{\sigma_{X_1}})^2+(\frac{x_2-\mu_{X_2}}{\sigma_{X_2}})^2-


2ρ(xμX1)(x2μX2)σX1σX2]}-2\rho \frac{(x-\mu_{X_1})(x_2-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}]\}


where μX1, μX2\mu_{X_1},\ \mu_{X_2} are means,

σX1, σX1\sigma_{X_1},\ \sigma_{X_1} are standard deviations,

ρ\rho is correlation coefficient.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS