Question #236972

A book containing 150 pages has 100 misprints. Find the probability that a particular

page contains (a) no misprints, (b) 5 misprints, (c) at least 2 misprints, (d) more than 1

misprint.


1
Expert's answer
2021-09-14T06:05:14-0400

Let X=X= the number of misprints per page: XPo(λ).X\sim Po(\lambda).

λ=100150=23\lambda=\dfrac{100}{150}=\dfrac{2}{3}


(a)


P(X=0)=e2/3(23)00!=e2/30.513417P(X=0)=\dfrac{e^{-2/3}(\dfrac{2}{3})^0}{0!}=e^{-2/3}\approx0.513417



(b)


P(X=5)=e2/3(23)55!0.000563P(X=5)=\dfrac{e^{-2/3}(\dfrac{2}{3})^5}{5!}\approx0.000563

(c)


P(X2)=1P(X=0)P(X=1)P(X\geq2)=1-P(X=0)-P(X=1)

=1e2/3(23)00!e2/3(23)11!0.144305=1-\dfrac{e^{-2/3}(\dfrac{2}{3})^0}{0!}-\dfrac{e^{-2/3}(\dfrac{2}{3})^1}{1!}\approx0.144305


(d)


P(X>1)=P(X2)=1P(X=0)P(X=1)P(X>1)=P(X\geq2)=1-P(X=0)-P(X=1)

=1e2/3(23)00!e2/3(23)11!0.144305=1-\dfrac{e^{-2/3}(\dfrac{2}{3})^0}{0!}-\dfrac{e^{-2/3}(\dfrac{2}{3})^1}{1!}\approx0.144305




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS