Question #237147

Two random samples denoted by X1 and X2 of sizes 10 and 20 respectively have unbiased sample variances 0.0003 and 0.0001 respectively. Assuming that the populations from which the samples have been drawn are normal, determine whether the variance of the first sample is significantly different from the variance of the second sample.


1
Expert's answer
2021-10-04T18:20:43-0400

Let the following notations represent population 1 and 2.

Population1

n1=10n_1=10

Sample variance=S12=0.0003Sample\displaystyle\space variance=S^2_1=0.0003

Population 2

n2=20n_2=20

Sample variance=S22=0.0001Sample\displaystyle\space variance=S^2_2=0.0001

Hypothesis tested is,

H0:σ12=σ22 against H1:σ12σ22H_0: \sigma^2_1=\sigma^2_2\displaystyle\space against\displaystyle\space H_1:\sigma^2_1\not=\sigma^2_2

To test this hypothesis, F distribution is used to establish a decision criteria as follows.

The F test statistic is given as,

Fc=S12/S22=0.0003/0.0001=3F_c=S^2_1/S^2_2=0.0003/0.0001=3

Fc=3F_c=3 is compared with the FF table with (n11)=101=9(n_1-1)=10-1=9 and (n21)=201=19(n_2-1)=20-1=19 degrees of freedom at α=0.05\alpha=0.05

This table value Fα/2,9,19=F0.05/2,9,19=F0.025,9,19=2.88F_{\alpha/2,9,19}=F_{0.05/2,9,19}=F_{0.025,9,19}=2.88. α/2\alpha/2 is used because it is a two-sided test.

Since Fc=3F_c=3 is greater than the table value F0.025,9,19=2.88F_{0.025,9,19}=2.88, we reject the null hypothesis and conclude that there is sufficient evidence to show that the variance of the first sample is significantly different from the variance of the second sample.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS