2(a) Construct Laspeyres, Paasche and Fisher indices from the following data:
Item 2018 2019
Price (Rs.) Expenditure (Rs.) Price (Rs.) Expenditure (Rs.)
A 10 60 15 75
B 12 120 15 150
C 18 90 27 81
D 8 40 12 48
2(b) Fit a straight line trend to the following data and estimate the expected profit for the year
2022. What is the average annual change in profit?
Year 2013 2014 2015 2016 2017 2018 2019
Profit (in lacs of Rs.) 60 72 75 65 80 85 95
Laspeyres index
"\\frac{\\sum P_1Q_1}{\\sum P_0Q_0}*100"
Paasche index
"\\frac{\\sum P_1Q_1}{\\sum P_0Q_1}*100"
Fisher index
"\\sqrt\\frac{\\sum P_1Q_0}{\\sum PQ_0}*\\frac{\\sum P_1Q_1}{\\sum P_0Q_1}*100\\\\\n=\\sqrt{L*P}"
PO, P1 = Initial price and current price respectively
QO, Q1= Initial quantity and current quantity respectively
Laspeyres index
"L=\\frac{\\sum P_1Q_1}{\\sum P_0Q_0}*100\\\\\nL=\\frac{15*6+15*10+27*5+5*12}{10*6+12*10+18*5}*100\\\\\nL=140.32"
Paasche index
"L=\\frac{\\sum P_1Q_1}{\\sum P_0Q_1}*100\\\\\nL=\\frac{15*5+15*10+27*3+12*4}{10*5+12*10+18*3+8*4}*100\\\\\nL=138.28"
Fisher index
"F=\\sqrt\\frac{\\sum P_1Q_0}{\\sum PQ_0}*\\frac{\\sum P_1Q_1}{\\sum P_0Q_1}*100\\\\\nF=\\sqrt{L*P}\\\\\nF=\\sqrt{140.322*138.28}\\\\\nF=139.2972"
Comments
Leave a comment