A random variable X has the following density function fx(x) = 2 − kx, 0 < x < 1/k
a) Find the constant k.
b) Find the mean.
c) Find the standard deviation.
(a)
"=2\/k-1\/(2k)=\\dfrac{3}{2k}=1=>k=\\dfrac{3}{2}"
(b)
"=[x^2-\\dfrac{x^3}{2}]\\begin{matrix}\n 2\/3 \\\\\n 0\n\\end{matrix}=\\dfrac{8}{27}"
(c)
"=[\\dfrac{2}{3}x^3-\\dfrac{3}{8}x^4]\\begin{matrix}\n 2\/3 \\\\\n 0\n\\end{matrix}=\\dfrac{10}{81}"
"Var(X)=\\sigma^2=E(X^2)-(E(X))^2"
"=\\dfrac{10}{81}-(\\dfrac{8}{27})^2=\\dfrac{26}{729}"
"\\sigma=\\sqrt{\\sigma^2}=\\dfrac{\\sqrt{26}}{27}"
Comments
Leave a comment