Let random variables X , Y , Z X, Y, Z X , Y , Z denote Total MSMEs, Total Manufacturing MSMEs, Total Service MSMEs respectively.
E ( X ) = ( 755 + 2735 + 36 + 1229 + 1581 + 578 + 1731 + 409 + 4951 + 1014 + 1795 + 148 ) / 12 = 1414 E(X)=(755+2735+36+1229+1581+578+1731+409+4951+1014+1795+148)/12=1414 E ( X ) = ( 755 + 2735 + 36 + 1229 + 1581 + 578 + 1731 + 409 + 4951 + 1014 + 1795 + 148 ) /12 = 1414
E ( X 2 ) = ( 75 5 2 + 273 5 2 + 3 6 2 + 122 9 2 + 158 1 2 + 57 8 2 + 173 1 2 + 40 9 2 + 495 1 2 + 101 4 2 + 179 5 2 + 14 8 2 ) / 12 = 3695316.67 E(X^2) = (755^2+2735^2+36^2+1229^2+1581^2+578^2+1731^2+409^2+4951^2+1014^2+1795^2+148^2)/12=3695316.67 E ( X 2 ) = ( 75 5 2 + 273 5 2 + 3 6 2 + 122 9 2 + 158 1 2 + 57 8 2 + 173 1 2 + 40 9 2 + 495 1 2 + 101 4 2 + 179 5 2 + 14 8 2 ) /12 = 3695316.67
V a r ( X ) = E ( X 2 ) − E ( X ) 2 = 3695316.67 − 141 4 2 = 1697334.42 Var(X)=E(X^2 )-E(X)^2=3695316.67-1414^2=1697334.42 Va r ( X ) = E ( X 2 ) − E ( X ) 2 = 3695316.67 − 141 4 2 = 1697334.42
σ ( X ) = V a r ( X ) = 1697334.42 = 1302.82 \sigma(X)=\sqrt{Var(X)}=\sqrt{1697334.42}=1302.82 σ ( X ) = Va r ( X ) = 1697334.42 = 1302.82
One can note that mean is affected by extreme observation: ∣ X ( S o l a n ) − E ( X ) ∣ / σ ( X ) > 2.7 |X(Solan)-E(X)|/\sigma(X) >2.7 ∣ X ( S o l an ) − E ( X ) ∣/ σ ( X ) > 2.7 . Without Solan the mean value will be ( 1414 ⋅ 12 − 4951 ) / 11 = 1092.45 (1414\cdot 12-4951)/11=1092.45 ( 1414 ⋅ 12 − 4951 ) /11 = 1092.45 .
E ( Y ) = ( 246 + 851 + 17 + 444 + 668 + 229 + 717 + 181 + 2848 + 563 + 413 + 42 ) / 12 = 601.58 E(Y)=(246+851+17+444+668+229+717+181+2848+563+413+42)/12=601.58 E ( Y ) = ( 246 + 851 + 17 + 444 + 668 + 229 + 717 + 181 + 2848 + 563 + 413 + 42 ) /12 = 601.58
E ( Y 2 ) = ( 24 6 2 + 85 1 2 + 1 7 2 + 44 4 2 + 66 8 2 + 22 9 2 + 71 7 2 + 18 1 2 + 284 8 2 + 56 3 2 + 41 3 2 + 4 2 2 ) / 12 = 885671.92 E(Y^2)=(246^2+851^2+17^2+444^2+668^2+229^2+717^2+181^2+2848^2+563^2+413^2+42^2)/12=885671.92 E ( Y 2 ) = ( 24 6 2 + 85 1 2 + 1 7 2 + 44 4 2 + 66 8 2 + 22 9 2 + 71 7 2 + 18 1 2 + 284 8 2 + 56 3 2 + 41 3 2 + 4 2 2 ) /12 = 885671.92
V a r ( Y ) = E ( Y 2 ) − E ( Y ) 2 = 885671.92 − 601.5 8 2 = 523769.410 Var(Y)=E(Y^2 )-E(Y)^2=885671.92-601.58^2=523769.410 Va r ( Y ) = E ( Y 2 ) − E ( Y ) 2 = 885671.92 − 601.5 8 2 = 523769.410
σ ( Y ) = V a r ( Y ) = 885671.92 = 941.1 \sigma(Y)=\sqrt{Var(Y)}=\sqrt{885671.92}=941.1 σ ( Y ) = Va r ( Y ) = 885671.92 = 941.1
One can note that mean is affected by extreme observation ∣ Y ( S o l a n ) − E ( Y ) ∣ / σ ( Y ) > 2.387 |Y(Solan)-E(Y)|/\sigma(Y) >2.387 ∣ Y ( S o l an ) − E ( Y ) ∣/ σ ( Y ) > 2.387 . Without Solan the mean value will be ( 601.58 ⋅ 12 − 2848 ) / 11 = 397.36 (601.58\cdot 12-2848)/11=397.36 ( 601.58 ⋅ 12 − 2848 ) /11 = 397.36 .
E ( Z ) = ( 509 + 1884 + 19 + 785 + 913 + 349 + 1014 + 228 + 2103 + 451 + 1382 + 106 ) / 12 = 811.92 E(Z)=(509+1884+19+785+913+349+1014+228+2103+451+1382+106)/12=811.92 E ( Z ) = ( 509 + 1884 + 19 + 785 + 913 + 349 + 1014 + 228 + 2103 + 451 + 1382 + 106 ) /12 = 811.92
E ( Z 2 ) = ( 50 9 2 + 188 4 2 + 1 9 2 + 78 5 2 + 91 3 2 + 34 9 2 + 101 4 2 + 22 8 2 + 210 3 2 + 45 1 2 + 138 2 2 + 10 6 2 ) / 12 = 1083986.92 E(Z^2)=(509^2+1884^2+19^2+785^2+913^2+349^2+1014^2+228^2+2103^2+451^2+1382^2+106^2)/12=1083986.92 E ( Z 2 ) = ( 50 9 2 + 188 4 2 + 1 9 2 + 78 5 2 + 91 3 2 + 34 9 2 + 101 4 2 + 22 8 2 + 210 3 2 + 45 1 2 + 138 2 2 + 10 6 2 ) /12 = 1083986.92
V a r ( Z ) = E ( Z 2 ) − E ( Z ) 2 = 1083986.92 − 811.9 2 2 = 424778.24 Var(Z)=E(Z^2 )-E(Z)^2=1083986.92-811.92^2=424778.24 Va r ( Z ) = E ( Z 2 ) − E ( Z ) 2 = 1083986.92 − 811.9 2 2 = 424778.24
σ ( Y ) = V a r ( Y ) = 424778.24 = 651.75 \sigma(Y)=\sqrt{Var(Y)}=\sqrt{424778.24}=651.75 σ ( Y ) = Va r ( Y ) = 424778.24 = 651.75
One can note that mean is affected by extreme observation ∣ Z ( S o l a n ) − Z ( Y ) ∣ / σ ( Z ) > 1.98 |Z(Solan)-Z(Y)|/σ(Z) >1.98 ∣ Z ( S o l an ) − Z ( Y ) ∣/ σ ( Z ) > 1.98 . Without Solan the mean value will be ( 811.92 ⋅ 12 − 2848 ) / 11 = 694.55 (811.92\cdot 12-2848)/11=694.55 ( 811.92 ⋅ 12 − 2848 ) /11 = 694.55 .
Comments