Calculate the Mean and Standard Deviation using Total MSMEs, Total Manufacturing MSMEs, and Total Service MSMEs .Write your comment if mean is affected by extreme observation.
InternalAssignmentApplicableforSeptember2021Examination
State District Total Total Total
MSMEs Manufacturing Service
MSMEs MSMEs
HIMACHAL PRADESH Chamba 755 246 509
HIMACHAL PRADESH Kangra 2735 851 1884
HIMACHAL PRADESH Lahul & Spiti 36 17 19
HIMACHAL PRASEDH Kullu 1229 444 785
HIMACHAL PRADESH Mandi 1581 668 913
HIMACHAL PRADESH Hamirpur 578 229 349
HIMACHAL PRADESH Una 1731 717 1014
HIMACHAL PRADESH Bilaspur 409 181 228
HIMACHAL PRADESH Solan 4951 2848 2103
HIMACHAL PRADESH Sirmaur 1014 561 451
HIMACHAL PRADESH Shimla 1795 413 1382
HIMACHAL PRADESH Kinnaur 148 42 106
Source: Data.Gov.in(MSMEsasper2011)
Let random variables "X, Y, Z" denote Total MSMEs, Total Manufacturing MSMEs, Total Service MSMEs respectively.
"E(X)=(755+2735+36+1229+1581+578+1731+409+4951+1014+1795+148)\/12=1414"
"E(X^2) = (755^2+2735^2+36^2+1229^2+1581^2+578^2+1731^2+409^2+4951^2+1014^2+1795^2+148^2)\/12=3695316.67"
"Var(X)=E(X^2 )-E(X)^2=3695316.67-1414^2=1697334.42"
"\\sigma(X)=\\sqrt{Var(X)}=\\sqrt{1697334.42}=1302.82"
One can note that mean is affected by extreme observation: "|X(Solan)-E(X)|\/\\sigma(X) >2.7" . Without Solan the mean value will be "(1414\\cdot 12-4951)\/11=1092.45" .
"E(Y)=(246+851+17+444+668+229+717+181+2848+563+413+42)\/12=601.58"
"E(Y^2)=(246^2+851^2+17^2+444^2+668^2+229^2+717^2+181^2+2848^2+563^2+413^2+42^2)\/12=885671.92"
"Var(Y)=E(Y^2 )-E(Y)^2=885671.92-601.58^2=523769.410"
"\\sigma(Y)=\\sqrt{Var(Y)}=\\sqrt{885671.92}=941.1"
One can note that mean is affected by extreme observation "|Y(Solan)-E(Y)|\/\\sigma(Y) >2.387" . Without Solan the mean value will be "(601.58\\cdot 12-2848)\/11=397.36" .
"E(Z)=(509+1884+19+785+913+349+1014+228+2103+451+1382+106)\/12=811.92"
"E(Z^2)=(509^2+1884^2+19^2+785^2+913^2+349^2+1014^2+228^2+2103^2+451^2+1382^2+106^2)\/12=1083986.92"
"Var(Z)=E(Z^2 )-E(Z)^2=1083986.92-811.92^2=424778.24"
"\\sigma(Y)=\\sqrt{Var(Y)}=\\sqrt{424778.24}=651.75"
One can note that mean is affected by extreme observation "|Z(Solan)-Z(Y)|\/\u03c3(Z) >1.98" . Without Solan the mean value will be "(811.92\\cdot 12-2848)\/11=694.55" .
Comments
Leave a comment