Question 2:
The Project Manager found that distribution of the amount of gravel (in tons) sold by a particular construction supply company in a given week is a continuous random variable X with PDF as
f(x)={█(3/2(1-x^2) 0≤x ≤1@0 elsewhere)┤
Find the expected value and standard deviation of the amount of gravel sold in a week.
Consider a normally distributed random variable X with a mean of 85 and standard deviation of 10. Find P(90≤X≤100)?
The probability density function of X
"f(x)=\\left\\{\\begin{matrix}\n\n(3\/2)(1-x^2)\\; 0 \\leqslant x\\leqslant 1 & \\\\ \n\n0 \\; elsewhere & \n\n\\end{matrix}\\right."
Obtain the expected value of amount of gravel sold in a week:
"E(X)= \\int^{1}_{0}xf(x)dx \\\\\n\n= \\int^{1}_{0} \\frac{3}{2 }x(1-x^2)dx \\\\\n\n= \\frac{3}{2}\\int^{1}_{0}(x-x^3)dx \\\\\n\n= \\frac{3}{2}(\\frac{x^2}{2} -\\frac{x^4}{4})^1_0 \\\\\n\n= \\frac{3}{2}(\\frac{1}{2} -\\frac{1}{4}) \\\\\n\n= \\frac{3}{2} \\times \\frac{2}{8} \\\\\n\n= \\frac{3}{8}"
Obtain the Standard deviation of amount of gravel sold in a week:
"E(X^2) = \\int^{1}_{0}x^2f(x)dx \\\\\n\n=\\int^{1}_{0} \\frac{3}{2}x^2(1-x^2)dx \\\\\n\n= \\frac{3}{2}\\int^{1}_{0} x^2 -x^4 dx \\\\\n\n= \\frac{3}{2}(\\frac{x^3}{3} -\\frac{x^5}{5})^1_0 \\\\\n\n= \\frac{3}{2}(\\frac{1}{3}-\\frac{2}{15}) \\\\\n\n= \\frac{3}{2} \\times \\frac{2}{15} \\\\\n\n= \\frac{3}{15} \\\\\n\n\\sigma^2= E(X^2) -[E(X)]^2 \\\\\n\n= \\frac{3}{15}-(\\frac{3}{8})^2 \\\\\n\n= \\frac{3}{15} -\\frac{9}{64} \\\\\n\n= 0.2-0.140625 \\\\\n\n= 0.0594 \\\\\n\\sigma = \\sqrt{0.0594}= 0.243"
The Standard deviation of amount of gravel sold in a week is 0.243.
Obtain the value of P(90≤X<100):
"P(90\u2264X\u2264100) = P(X\u2264100) -P(X\u226490) \\\\\n\n= P(Z\u2264 \\frac{100-85}{10}) -P(Z\u2264\\frac{90-85}{10}) \\\\\n\n= P(Z\u22641.5) -P(Z\u22640.5) \\\\\n\n= 0.9332-0.6915 \\\\\n\n= 0.2417"
The indicated probability is 0.2417
Comments
Leave a comment