Suppose X and Y are 2 independent normal random variable such that x~N(65,28) and Y~N(85,36).Find p(134<X+Y<166) and p(Y>x)
The distribution of a sum of two normally distributed independent variables "X\\sim N(\\mu_1, \\sigma_1^2)" and "Y\\sim N(\\mu_2, \\sigma_2^2)" is another normal distribution "(X+Y)\\sim N(\\mu_1+\\mu_2, \\sigma_1^2+\\sigma_2^2)."
Given "X\\sim N(65, 28), Y\\sim N(85, 36)." Then "(X+Y)\\sim N(65+85, 28+36)."
"=P(X+Y<166)-P(X+Y\\leq134)"
"=P(Z<\\dfrac{166-150}{\\sqrt{64}})-P(Z\\leq\\dfrac{134-150}{\\sqrt{64}})"
"=P(Z<2)-P(Z\\leq-2)"
"\\approx0.97725-0.02275=0.9545"
The distribution of a difference of two normally distributed independent variables "Y\\sim N(\\mu_2, \\sigma_2^2)" and "X\\sim N(\\mu_1, \\sigma_1^2)" is another normal distribution "(Y-X)\\sim N(\\mu_2-\\mu_1, \\sigma_1^2+\\sigma_2^2)."
Given "X\\sim N(65, 28), Y\\sim N(85, 36)." Then "(Y-X)\\sim N(85-65, 28+36)."
"\\approx0.9938"
Comments
Leave a comment