Question #222303

Jeremy sells a magazine which is produced in order to raise money for the homeless people. The probability of making a sale is independently ,0.09 for each person he approaches. Given that he approaches 40 people, find the probability that he will make

I) exactly 4 sales

ii) at most 3 sales

iii)more than 3 sales



1
Expert's answer
2021-08-10T11:13:50-0400

p=0.09q=1p=10.09=0.91n=40P(X=k)=Ckn×pk×qnkp=0.09 \\ q=1-p=1-0.09=0.91 \\ n=40 \\ P(X=k) = C^n_k \times p^k \times q^{n-k}

i)

P(X=4)=40!4!(404)!×0.094×0.91404=91390×6.561×105×0.033534=0.2010P(X=4) = \frac{40!}{4!(40-4)!} \times 0.09^4 \times 0.91^{40-4} \\ = 91390 \times 6.561 \times 10^{-5} \times 0.033534 \\ = 0.2010

ii)

P(X3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)P(X=0)=40!0!(400)!×0.090×0.91400=1×1×0.02299=0.02299P(X=1)=40!1!(401)!×0.091×0.91401=40×0.09×0.0252705=0.09097P(X=2)=40!2!(402)!×0.092×0.91402=780×0.0081×0.027769=0.17544P(X=3)=40!3!(403)!×0.093×0.91403=9880×0.000729×0.030516=0.21979P(X3)=0.02299+0.09097+0.17544+0.21979=0.50919P(X≤3) = P(X=0) + P(X=1) + P(X=2) +P(X=3) \\ P(X=0) = \frac{40!}{0!(40-0)!} \times 0.09^0 \times 0.91^{40-0} \\ = 1 \times 1 \times 0.02299 \\ = 0.02299 \\ P(X=1) = \frac{40!}{1!(40-1)!} \times 0.09^1 \times 0.91^{40-1} \\ = 40 \times 0.09 \times 0.0252705 \\ = 0.09097 \\ P(X=2) = \frac{40!}{2!(40-2)!} \times 0.09^2 \times 0.91^{40-2} \\ = 780 \times 0.0081 \times 0.027769 \\ = 0.17544 \\ P(X=3) = \frac{40!}{3!(40-3)!} \times 0.09^3 \times 0.91^{40-3} \\ = 9880 \times 0.000729 \times 0.030516 \\ = 0.21979 \\ P(X≤3) = 0.02299+ 0.09097+ 0.17544 +0.21979=0.50919

iii)

P(X>3)=1P(X3)=10.50919=0.49081P(X>3) = 1 -P(X≤3) \\ = 1 -0.50919 \\ = 0.49081


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS