In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation, if the marks are normally distributed.
Let "X=" student's mark: "X\\sim N(\\mu, \\sigma)"
"P(X<x_2)=P(Z<\\dfrac{x_2-\\mu}{\\sigma})=0.89"
"\\dfrac{x_1-\\mu}{\\sigma}\\approx-1.475791"
"\\dfrac{x_2-\\mu}{\\sigma}\\approx1.226528"
"x_1=0.35, \\dfrac{0.35-\\mu}{\\sigma}\\approx-1.475791"
"x_2=0.6, \\dfrac{0.6-\\mu}{\\sigma}\\approx1.226528"
"\\mu=0.35+1.475791\\sigma"
"\\mu=0.6-1.226528\\sigma"
"0.35+1.475791\\sigma=0.6-1.226528\\sigma"
"\\sigma=\\dfrac{0.6-0.35}{1.475791+1.226528}\\approx0.0925"
"\\mu\\approx0.4865"
"\\mu=48.65\\%, \\sigma=9.25\\%"
Comments
Leave a comment