Given that the least significant difference is 3.62, separate the following means:
I. 75.30
ii. 68.95
iii. 67.40
iv. 72.35
v. 70.75
vi. 48.50
vii. 39.52
Given, the means are:
x1=75.30
x2=68.95
x3=67.40
x4=72.35
x5=70.75
x6=48.50
x7=39.52
Now, the absolute difference of means are:
"|x 1-x 2|=|75.30-68.95|=6.35 \\geq L . S . D .\n\\\\|x|-x 3|=| 75.30-67.40 \\mid=7.9 \\geq L . S . D .\n\\\\|x 1-x 4|=|75.30-72.35|=2.95 \\not L . S . D\n\\\\|x|-x 5|=| 75.30-70.75 \\mid=4.55 \\geq L . S . D .\n\\\\|x 1-x 6|=|75.30-48.50|=26.8 \\geq L . S . D\n\\\\|x 1-x 7|=|75.30-39.52|=35.78 \\geq L . S . D\n\\\\|x 2-x 3|=|68.95-97.40|=1.55 \\ngeqslant L . S . D\n\\\\|x 2-x 4|=|68.95-72.35|=3.4 \\ngeqslant L . S . D\n\\\\|x 2-x 5|=|68.95-70.75|=1.8 \\ngeqslant L . S . D\n\\\\|x 2-x 6|=|68.95-48.50|=20.45 \\geq L . S . D\n\\\\|x 2-x 7|=|68.95-39.52|=29.43 \\geq L . S . D\n\\\\|x 3-x 4|=|67.40-72.35|=4.95 \\geq L . S . D\n\\\\|x 3-x 5|=|67.40-70.75|=3.35 \\ngeqslant L . S . D\n\\\\|x 3-x 6|=|67.40-48.50|=18.9 \\geq L . S . D\n\\\\|x 3-x 7|=|67.40-39.52|=27.88 \\geq L . S . D\n\\\\|x 4-x 5|=|72.35-70.75|=1.6 \\ngeqslant L . S . D\n\\\\|x 4-x 6|=|72.35-48.50|=23.85 \\geq L . S . D .\n\\\\|x 4-x 7|=|72.35-39.52|=32.83 \\geq L . S . D\n\\\\|x 5-x 6|=|70.75-48.50|=22.25 \\geq L . S . D\n\\\\|x 5-x 7|=|70.75-39.52|=31.23 \\geq L . S . D\n\\\\|x 6-x 7|=|48.50-39.52|=8.98 \\geq L . S . D"
Comments
Leave a comment