The moment generating fucntion of a random variable X is given by M(t)=(1-t/2)-3.
Find the mean and variance of X
"=(-3(-\\dfrac{1}{2})(1-\\dfrac{t}{2})^{-4})|_{t=0}=\\dfrac{3}{2}"
"E(X^2)=M''_t|_{t=0}"
"=(-4(\\dfrac{3}{2})(-\\dfrac{1}{2})(1-\\dfrac{t}{2})^{-5})|_{t=0}=3"
"Var(X)=E(X^2)-(E(X))^2=3-(\\dfrac{3}{2})^2 =\\dfrac{3}{4}"
Comments
Leave a comment