Find the mean, variance, and standard deviation of the probability distribution of the random variable X, which
can take only the values 1,2 and 3, given that P(1)= 10/33, P(2)= 1/3, and P(3)= 12/33.
"E(X)=1(\\dfrac{10}{33})+2(\\dfrac{1}{3})+3(\\dfrac{12}{33})=\\dfrac{68}{33}\\approx2.0606"
"E(X^2)=1^2(\\dfrac{10}{33})+2^2(\\dfrac{1}{3})+3^2(\\dfrac{12}{33})=\\dfrac{162}{33}"
"Var(X)=\\sigma^2=E(X^2)-(E(X)^2"
"=\\dfrac{162}{33}-(\\dfrac{68}{33})^2=\\dfrac{722}{1089}"
"\\sigma=\\sqrt{\\dfrac{722}{1089}}=\\dfrac{\\sqrt{722}}{33}\\approx0.8142"
Comments
Leave a comment