Question #217700

Find the mean, variance, and standard deviation of the probability distribution of the random variable X, which

can take only the values 1,2 and 3, given that P(1)= 10/33, P(2)= 1/3, and P(3)= 12/33.


1
Expert's answer
2021-07-18T10:20:18-0400
x123p(x)10/331/312/33\begin{matrix} x & 1 & 2 & 3 \\ p(x) & 10/33 & 1/3 & 12/33 \end{matrix}

E(X)=1(1033)+2(13)+3(1233)=68332.0606E(X)=1(\dfrac{10}{33})+2(\dfrac{1}{3})+3(\dfrac{12}{33})=\dfrac{68}{33}\approx2.0606

E(X2)=12(1033)+22(13)+32(1233)=16233E(X^2)=1^2(\dfrac{10}{33})+2^2(\dfrac{1}{3})+3^2(\dfrac{12}{33})=\dfrac{162}{33}

Var(X)=σ2=E(X2)(E(X)2Var(X)=\sigma^2=E(X^2)-(E(X)^2

=16233(6833)2=7221089=\dfrac{162}{33}-(\dfrac{68}{33})^2=\dfrac{722}{1089}

σ=7221089=722330.8142\sigma=\sqrt{\dfrac{722}{1089}}=\dfrac{\sqrt{722}}{33}\approx0.8142


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS