(i)
m e a n = μ = 2 + 3 + 4 + 5 4 = 3.5 mean=\mu=\dfrac{2+3+4+5}{4}=3.5 m e an = μ = 4 2 + 3 + 4 + 5 = 3.5 (ii)
V a r i a n c e = σ 2 Variance=\sigma^2 Va r ian ce = σ 2
= ( 2 − 3.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.5 ) 2 + ( 5 − 3.5 ) 2 4 =\dfrac{(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2}{4} = 4 ( 2 − 3.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.5 ) 2 + ( 5 − 3.5 ) 2
= 1.25 =1.25 = 1.25
σ = σ 2 = 1.25 = 5 2 \sigma=\sqrt{\sigma^2}=\sqrt{1.25}=\dfrac{\sqrt{5}}{2} σ = σ 2 = 1.25 = 2 5
(iii) We have population values 2 , 3 , 4 , 5 , 2, 3, 4, 5, 2 , 3 , 4 , 5 , population size N = 4 , N=4, N = 4 , and sample size n = 2. n=2. n = 2. Thus, the number of possible samples which can be drawn with replacement is
N n = 4 2 = 16 N^n=4^2=16 N n = 4 2 = 16
N o S a m p l e M e a n 1 ( 2 , 2 ) 2 2 ( 2 , 3 ) 2.5 3 ( 2 , 4 ) 3 4 ( 2 , 5 ) 3.5 5 ( 3 , 2 ) 2.5 6 ( 3 , 3 ) 3 7 ( 3 , 4 ) 3.5 8 ( 3 , 5 ) 4 9 ( 4 , 2 ) 3 10 ( 4 , 3 ) 3.5 11 ( 4 , 4 ) 4 12 ( 4 , 5 ) 4.5 13 ( 5 , 2 ) 3.5 14 ( 5 , 3 ) 4 15 ( 5 , 4 ) 4.5 16 ( 5 , 5 ) 5 \def\arraystretch{1.5}
\begin{array}{c:c:c}
No & Sample & Mean \\ \hline
1 & (2, 2) & 2 \\
\hdashline
2 & (2,3) & 2.5 \\
\hdashline
3 & (2,4) & 3\\
\hdashline
4 & (2,5) & 3.5 \\
\hdashline
5 & (3,2) & 2.5 \\
\hdashline
6 & (3, 3) & 3\\
\hdashline
7 & (3,4) & 3.5 \\
\hdashline
8 & (3, 5) & 4 \\
\hdashline
9 & (4,2) & 3 \\
\hdashline
10 & (4, 3) & 3.5 \\
\hdashline
11 & (4,4) & 4 \\
\hdashline
12 & (4, 5) & 4.5 \\
\hdashline
13 & (5,2) & 3.5 \\
\hdashline
14 & (5, 3) & 4 \\
\hdashline
15 & (5,4) & 4.5 \\
\hdashline
16 & (5, 5) & 5\\
\hdashline
\end{array} N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 S am pl e ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) M e an 2 2.5 3 3.5 2.5 3 3.5 4 3 3.5 4 4.5 3.5 4 4.5 5
The sampling distribution of the sample mean x ˉ \bar{x} x ˉ and its mean and standard deviation are:
x ˉ f f ( x ˉ ) x ˉ f ( x ˉ ) x ˉ 2 f ( x ˉ ) 2 1 1 / 16 2 / 16 4 / 16 2.5 2 2 / 16 5 / 16 12.5 / 16 3 3 3 / 16 9 / 16 27 / 16 3.5 4 4 / 16 14 / 16 49 / 16 4 3 3 / 16 12 / 16 48 / 16 4.5 2 2 / 16 9 / 16 40.5 / 16 5 1 1 / 16 5 / 16 25 / 16 T o t a l 16 1 3.5 103 / 8 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:}
\bar{x} & f & f(\bar{x})& \bar{x}f(\bar{x})& \bar{x}^2f(\bar{x}) \\ \hline
2 & 1 & 1/16 & 2/16 & 4/16 \\
\hdashline
2.5 & 2 & 2/16 & 5/16 & 12.5/16 \\
\hdashline
3 & 3 & 3/16 & 9/16 &27/16 \\
\hdashline
3.5 & 4 & 4/16 & 14/16 & 49/16 \\
\hdashline
4 & 3 & 3/16 & 12/16 & 48/16 \\
\hdashline
4.5 & 2 & 2/16 & 9/16 & 40.5/16 \\
\hdashline
5 & 1 & 1/16 & 5/16 & 25/16 \\
\hdashline
Total &1 6 & 1 & 3.5 & 103/8\\
\hdashline
\end{array} x ˉ 2 2.5 3 3.5 4 4.5 5 T o t a l f 1 2 3 4 3 2 1 16 f ( x ˉ ) 1/16 2/16 3/16 4/16 3/16 2/16 1/16 1 x ˉ f ( x ˉ ) 2/16 5/16 9/16 14/16 12/16 9/16 5/16 3.5 x ˉ 2 f ( x ˉ ) 4/16 12.5/16 27/16 49/16 48/16 40.5/16 25/16 103/8
E ( X ˉ ) = ∑ x ˉ f ( x ˉ ) = 3.5 E(\bar{X})=\sum\bar{x}f(\bar{x})=3.5 E ( X ˉ ) = ∑ x ˉ f ( x ˉ ) = 3.5
V a r ( X ˉ ) = ∑ x ˉ 2 f ( x ˉ ) − ( ∑ x ˉ f ( x ˉ ) ) 2 Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2 Va r ( X ˉ ) = ∑ x ˉ 2 f ( x ˉ ) − ( ∑ x ˉ f ( x ˉ ) ) 2
= 103 8 − 49 4 = 5 8 =\dfrac{103}{8}-\dfrac{49}{4}=\dfrac{5}{8} = 8 103 − 4 49 = 8 5
E ( X ˉ ) = 3.5 = μ E(\bar{X})=3.5=\mu E ( X ˉ ) = 3.5 = μ
(iv)
V a r ( X ˉ ) = ∑ x ˉ 2 f ( x ˉ ) − ( ∑ x ˉ f ( x ˉ ) ) 2 Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2 Va r ( X ˉ ) = ∑ x ˉ 2 f ( x ˉ ) − ( ∑ x ˉ f ( x ˉ ) ) 2
= 103 8 − 49 4 = 5 8 =\dfrac{103}{8}-\dfrac{49}{4}=\dfrac{5}{8} = 8 103 − 4 49 = 8 5
V a r ( X ˉ ) = σ x ˉ 2 = 5 8 = σ 2 n = 5 4 ( 2 ) Var(\bar{X})=\sigma_{\bar{x}}^2=\dfrac{5}{8}=\dfrac{\sigma^2}{n}=\dfrac{5}{4(2)} Va r ( X ˉ ) = σ x ˉ 2 = 8 5 = n σ 2 = 4 ( 2 ) 5
σ x ˉ = 10 4 = σ n \sigma_{\bar{x}}=\dfrac{\sqrt{10}}{4}=\dfrac{\sigma}{\sqrt{n}} σ x ˉ = 4 10 = n σ
Comments