Question #217588

A population consists of four numbers 2, 3, 4, 5. Consider all possible distinct

samples of size two with replacement. Find (i) the population mean (ii) the

population standard deviation (iii) the sampling distribution of means (iv)

standard deviation of the sampling distribution of means


1
Expert's answer
2021-07-18T09:14:49-0400

(i)


mean=μ=2+3+4+54=3.5mean=\mu=\dfrac{2+3+4+5}{4}=3.5

(ii)

Variance=σ2Variance=\sigma^2

=(23.5)2+(33.5)2+(43.5)2+(53.5)24=\dfrac{(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2}{4}

=1.25=1.25

σ=σ2=1.25=52\sigma=\sqrt{\sigma^2}=\sqrt{1.25}=\dfrac{\sqrt{5}}{2}

(iii) We have population values 2,3,4,5,2, 3, 4, 5, population size N=4,N=4, and sample size n=2.n=2. Thus, the number of possible samples which can be drawn with replacement is



Nn=42=16N^n=4^2=16


NoSampleMean1(2,2)22(2,3)2.53(2,4)34(2,5)3.55(3,2)2.56(3,3)37(3,4)3.58(3,5)49(4,2)310(4,3)3.511(4,4)412(4,5)4.513(5,2)3.514(5,3)415(5,4)4.516(5,5)5\def\arraystretch{1.5} \begin{array}{c:c:c} No & Sample & Mean \\ \hline 1 & (2, 2) & 2 \\ \hdashline 2 & (2,3) & 2.5 \\ \hdashline 3 & (2,4) & 3\\ \hdashline 4 & (2,5) & 3.5 \\ \hdashline 5 & (3,2) & 2.5 \\ \hdashline 6 & (3, 3) & 3\\ \hdashline 7 & (3,4) & 3.5 \\ \hdashline 8 & (3, 5) & 4 \\ \hdashline 9 & (4,2) & 3 \\ \hdashline 10 & (4, 3) & 3.5 \\ \hdashline 11 & (4,4) & 4 \\ \hdashline 12 & (4, 5) & 4.5 \\ \hdashline 13 & (5,2) & 3.5 \\ \hdashline 14 & (5, 3) & 4 \\ \hdashline 15 & (5,4) & 4.5 \\ \hdashline 16 & (5, 5) & 5\\ \hdashline \end{array}

The sampling distribution of the sample mean xˉ\bar{x} and its mean and standard deviation are:


xˉff(xˉ)xˉf(xˉ)xˉ2f(xˉ)211/162/164/162.522/165/1612.5/16333/169/1627/163.544/1614/1649/16433/1612/1648/164.522/169/1640.5/16511/165/1625/16Total1613.5103/8\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:} \bar{x} & f & f(\bar{x})& \bar{x}f(\bar{x})& \bar{x}^2f(\bar{x}) \\ \hline 2 & 1 & 1/16 & 2/16 & 4/16 \\ \hdashline 2.5 & 2 & 2/16 & 5/16 & 12.5/16 \\ \hdashline 3 & 3 & 3/16 & 9/16 &27/16 \\ \hdashline 3.5 & 4 & 4/16 & 14/16 & 49/16 \\ \hdashline 4 & 3 & 3/16 & 12/16 & 48/16 \\ \hdashline 4.5 & 2 & 2/16 & 9/16 & 40.5/16 \\ \hdashline 5 & 1 & 1/16 & 5/16 & 25/16 \\ \hdashline Total &1 6 & 1 & 3.5 & 103/8\\ \hdashline \end{array}

E(Xˉ)=xˉf(xˉ)=3.5E(\bar{X})=\sum\bar{x}f(\bar{x})=3.5

Var(Xˉ)=xˉ2f(xˉ)(xˉf(xˉ))2Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2

=1038494=58=\dfrac{103}{8}-\dfrac{49}{4}=\dfrac{5}{8}

E(Xˉ)=3.5=μE(\bar{X})=3.5=\mu

(iv)


Var(Xˉ)=xˉ2f(xˉ)(xˉf(xˉ))2Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2

=1038494=58=\dfrac{103}{8}-\dfrac{49}{4}=\dfrac{5}{8}

Var(Xˉ)=σxˉ2=58=σ2n=54(2)Var(\bar{X})=\sigma_{\bar{x}}^2=\dfrac{5}{8}=\dfrac{\sigma^2}{n}=\dfrac{5}{4(2)}

σxˉ=104=σn\sigma_{\bar{x}}=\dfrac{\sqrt{10}}{4}=\dfrac{\sigma}{\sqrt{n}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS