Answer to Question #217588 in Statistics and Probability for Sanju

Question #217588

A population consists of four numbers 2, 3, 4, 5. Consider all possible distinct

samples of size two with replacement. Find (i) the population mean (ii) the

population standard deviation (iii) the sampling distribution of means (iv)

standard deviation of the sampling distribution of means


1
Expert's answer
2021-07-18T09:14:49-0400

(i)


"mean=\\mu=\\dfrac{2+3+4+5}{4}=3.5"

(ii)

"Variance=\\sigma^2"

"=\\dfrac{(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2}{4}"

"=1.25"

"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{1.25}=\\dfrac{\\sqrt{5}}{2}"

(iii) We have population values "2, 3, 4, 5," population size "N=4," and sample size "n=2." Thus, the number of possible samples which can be drawn with replacement is



"N^n=4^2=16"


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n No & Sample & Mean \\\\ \\hline\n 1 & (2, 2) & 2 \\\\\n \\hdashline\n 2 & (2,3) & 2.5 \\\\\n \\hdashline\n3 & (2,4) & 3\\\\\n \\hdashline\n4 & (2,5) & 3.5 \\\\\n \\hdashline\n5 & (3,2) & 2.5 \\\\\n \\hdashline\n6 & (3, 3) & 3\\\\\n \\hdashline\n7 & (3,4) & 3.5 \\\\\n \\hdashline\n8 & (3, 5) & 4 \\\\\n \\hdashline\n9 & (4,2) & 3 \\\\\n \\hdashline\n10 & (4, 3) & 3.5 \\\\\n \\hdashline\n11 & (4,4) & 4 \\\\\n \\hdashline\n12 & (4, 5) & 4.5 \\\\\n \\hdashline\n13 & (5,2) & 3.5 \\\\\n \\hdashline\n14 & (5, 3) & 4 \\\\\n \\hdashline\n15 & (5,4) & 4.5 \\\\\n \\hdashline\n16 & (5, 5) & 5\\\\\n \\hdashline\n\\end{array}"

The sampling distribution of the sample mean "\\bar{x}" and its mean and standard deviation are:


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:}\n \\bar{x} & f & f(\\bar{x})& \\bar{x}f(\\bar{x})& \\bar{x}^2f(\\bar{x}) \\\\ \\hline\n 2 & 1 & 1\/16 & 2\/16 & 4\/16 \\\\\n \\hdashline\n 2.5 & 2 & 2\/16 & 5\/16 & 12.5\/16 \\\\\n \\hdashline\n 3 & 3 & 3\/16 & 9\/16 &27\/16 \\\\\n \\hdashline\n 3.5 & 4 & 4\/16 & 14\/16 & 49\/16 \\\\\n \\hdashline\n 4 & 3 & 3\/16 & 12\/16 & 48\/16 \\\\\n \\hdashline\n 4.5 & 2 & 2\/16 & 9\/16 & 40.5\/16 \\\\\n \\hdashline\n 5 & 1 & 1\/16 & 5\/16 & 25\/16 \\\\\n \\hdashline\n Total &1 6 & 1 & 3.5 & 103\/8\\\\\n \\hdashline\n\\end{array}"

"E(\\bar{X})=\\sum\\bar{x}f(\\bar{x})=3.5"

"Var(\\bar{X})=\\sum\\bar{x}^2f(\\bar{x})-(\\sum\\bar{x}f(\\bar{x}))^2"

"=\\dfrac{103}{8}-\\dfrac{49}{4}=\\dfrac{5}{8}"

"E(\\bar{X})=3.5=\\mu"

(iv)


"Var(\\bar{X})=\\sum\\bar{x}^2f(\\bar{x})-(\\sum\\bar{x}f(\\bar{x}))^2"

"=\\dfrac{103}{8}-\\dfrac{49}{4}=\\dfrac{5}{8}"

"Var(\\bar{X})=\\sigma_{\\bar{x}}^2=\\dfrac{5}{8}=\\dfrac{\\sigma^2}{n}=\\dfrac{5}{4(2)}"

"\\sigma_{\\bar{x}}=\\dfrac{\\sqrt{10}}{4}=\\dfrac{\\sigma}{\\sqrt{n}}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS