Question #217609
consider a group of n= 4 people with the following ages: 16, 18, 20 and 22. Consider samples of size n= 2 from the group. If X is the average age of the two people in a sample, find:
the mean and variance of the sampling distribution of X.
compare these values to the mean and variance of the population.
1
Expert's answer
2021-07-18T08:22:10-0400


We have population values 16,18,20,22,16, 18, 20, 22, population size N=4,N=4, and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is



(42)=6\dbinom{4}{2}=6



mean=μ=16+18+20+224=19mean=\mu=\dfrac{16+18+20+22}{4}=19

Variance=σ2Variance=\sigma^2

=(1619)2+(1819)2+(2019)2+(2219)24=5=\dfrac{(16-19)^2+(18-19)^2+(20-19)^2+(22-19)^2}{4}=5

NoSampleMean1(16,18)172(16,20)183(16,22)194(18,20)195(18,22)206(20,22)21\def\arraystretch{1.5} \begin{array}{c:c:c} No & Sample & Mean \\ \hline 1 & (16, 18) & 17 \\ \hdashline 2 & (16, 20) & 18 \\ \hdashline 3 & (16, 22) & 19 \\ \hdashline 4 & (18, 20) & 19 \\ \hdashline 5 & (18, 22) & 20 \\ \hdashline 6& (20, 22) & 21 \\ \hdashline \end{array}

The sampling distribution of the sample mean xˉ\bar{x} and its mean and standard deviation are:


xˉff(xˉ)xˉf(xˉ)xˉ2f(xˉ)1711/617/6289/61811/618/6324/61922/638/6722/62011/620/6400/62111/621/6441/6Total61191088/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:} \bar{x} & f & f(\bar{x})& \bar{x}f(\bar{x})& \bar{x}^2f(\bar{x}) \\ \hline 17 & 1 & 1/6 & 17/6 & 289/6 \\ \hdashline 18 & 1 & 1/6 & 18/6 & 324/6 \\ \hdashline 19 & 2 & 2/6 & 38/6 & 722/6 \\ \hdashline 20 & 1 & 1/6 & 20/6 & 400/6 \\ \hdashline 21 & 1 & 1/6 & 21/6 & 441/6 \\ \hdashline Total & 6 & 1 & 19 & 1088/3 \\ \hdashline \end{array}

E(Xˉ)=xˉf(xˉ)=19E(\bar{X})=\sum\bar{x}f(\bar{x})=19

Var(Xˉ)=xˉ2f(xˉ)(xˉf(xˉ))2Var(\bar{X})=\sum\bar{x}^2f(\bar{x})-(\sum\bar{x}f(\bar{x}))^2

=10883192=53=\dfrac{1088}{3}-19^2=\dfrac{5}{3}

E(Xˉ)=19=μE(\bar{X})=19=\mu

Var(Xˉ)=53=σ2n(NnN1)=52(4241)Var(\bar{X})=\dfrac{5}{3}=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{5}{2}(\dfrac{4-2}{4-1})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS