xˉ1=91(66+67+75+76+82+84+88
+90+92)=80
xˉ2=911(64+66+74+78+82+85+87
+92+93+95+97)=83
s12=9−11((66−80)2+(67−80)2+(75−80)2
+(76−80)2+(82−80)2+(84−80)2
+(88−80)2+(90−80)2+(92−80)2
=4367=91.75
s22=11−11((64−83)2+(66−83)2+(74−83)2
+(78−83)2+(82−83)2+(85−83)2
+(87−83)2+(92−83)2+(93−83)2
+(95−83)2+(97−83)2
=5649=129.8
F=s12s22=91.75129.8≈1.4147For ν1=8 and ν2=10,F0.05=3.36
The calculated value of F is less than the tabulated value. So the null hypothesis is accepted.
Hence it may be concluded that two populations have the same variance.
Comments