Question #215541
Two random samples were drawn from two normal populations
and the values are
A 66 67 75 76 82 84 88 90 92
B 64 66 74 78 82 85 87 92 93 95 97
Test whether the two populations have the same variance at the 5%
level of significance (F=3.36) at 5% level for v1=10 and v2 = 8.
1
Expert's answer
2021-07-12T07:17:04-0400
xˉ1=19(66+67+75+76+82+84+88\bar{x}_1=\dfrac{1}{9}(66+ 67+ 75 +76 +82+ 84 +88

+90+92)=80+90+ 92)=80

xˉ2=119(64+66+74+78+82+85+87\bar{x}_2=\dfrac{11}{9}(64+ 66 +74+ 78 +82 +85 +87

+92+93+95+97)=83+ 92+ 93+ 95+ 97)=83

s12=191((6680)2+(6780)2+(7580)2s_1^2=\dfrac{1}{9-1}((66-80)^2+(67-80)^2+(75-80)^2

+(7680)2+(8280)2+(8480)2+(76-80)^2 +(82-80)^2+(84-80)^2

+(8880)2+(9080)2+(9280)2+(88-80)^2 +(90-80)^2 +(92-80)^2

=3674=91.75=\dfrac{367}{4}=91.75


s22=1111((6483)2+(6683)2+(7483)2s_2^2=\dfrac{1}{11-1}((64-83)^2+(66-83)^2+(74-83)^2

+(7883)2+(8283)2+(8583)2+(78-83)^2 +(82-83)^2+(85-83)^2

+(8783)2+(9283)2+(9383)2+(87-83)^2 +(92-83)^2 +(93-83)^2




+(9583)2+(9783)2+(95-83)^2+(97-83)^2

=6495=129.8=\dfrac{649}{5}=129.8

F=s22s12=129.891.751.4147F=\dfrac{s_2^2}{s_1^2}=\dfrac{129.8}{91.75}\approx1.4147

For ν1=8\nu_1=8 and ν2=10,F0.05=3.36\nu_2=10, F_{0.05}=3.36

The calculated value of FF is less than the tabulated value. So the null hypothesis is accepted.

Hence it may be concluded that two populations have the same variance.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS