Question #215502

Question 1

In an investigation into ownership of laptops among school students, 200 randomly chosen studens were interviewed.  It is found that 140 of them owned a laptop. 

(a)        Find the 99% confidence interval for the proportion of all school students owning a laptop.

(5 marks)

(b)        Test, at 5% level of significance, whether the proportion of school students owning a laptop is less than 75%.

(8 marks)




1
Expert's answer
2021-07-19T17:08:10-0400

A)Given that the sample size is n=200Sample proportion p=140200=0.7 q=1p=10.7=0.399%confidence interval for population proportion is pzα2pqn<p<p+zα2pqn0.72.58(0.7×0.3200)<p<0.7+2.58(0.7×0.3200)0.70.0836<p<0.7+0.08360.6164<p<0.7836Therefore, the 99%confidence interval for population proportion is 0.6164<p<0.7836.B)Let the null hypothesis H0:Proportion of school students own laptop p=0.75Alternative hypothesis H1:Proportion of school students own laptop is less than 0.75;(p<0.75)The significance level α=0.05The critical value is zα=1.65The test statistic is z=pp0pq=0.70.750.7×0.3=0.1091Since, the test statistic z>criticalvalue, we do not have a reason to reject the null hypothesis.Therefore the proportion of students own laptop is 0.75.A) Given \ that \ the \ sample \ size \ is \ n=200\\ Sample\ proportion \ p'= \frac{140}{200}=0.7\\ \Rightarrow \ q'=1-p'=1-0.7=0.3\\ 99\% confidence \ interval \ for\ population \ proportion \ is \ p'-z_\frac{\alpha}{2}\sqrt{\frac{p'q'}{n}}\lt p \lt p'+z_\frac{\alpha}{2}\sqrt{\frac{p'q'}{n}}\\ \Rightarrow 0.7-2.58(\sqrt{\frac{0.7×0.3}{200}})\lt p\lt 0.7+2.58(\sqrt{\frac{0.7×0.3}{200}})\\ 0.7-0.0836\lt p\lt 0.7+0.0836\\ 0.6164\lt p \lt 0.7836\\ Therefore, \ the \ 99\% confidence \ interval \ for \ population \ proportion \ is \ 0.6164\lt p \lt 0.7836.\\ B) Let \ the \ null \ hypothesis \ H_{0}:Proportion \ of \ school \ students \ own \ laptop \ p = 0.75\\ Alternative \ hypothesis \ H_{1}: Proportion \ of \ school \ students \ own \ laptop\ is \ less \ than \ 0.75 ; (p\lt 0.75)\\ The \ significance \ level \ \alpha =0.05\\ The\ critical \ value \ is \ z_{\alpha}=1.65\\ The \ test \ statistic \ is \ z=\frac{p-p_{0}}{\sqrt{pq}}=\frac{0.7-0.75}{\sqrt{0.7×0.3}}=-0.1091\\ Since,\ the \ test \ statistic \ z\gt -{critical value},\ we\ do \ not \ have \ a \ reason \ to \ reject \ the \ null \ hypothesis.\\ Therefore \ the \ proportion \ of \ students \ own \ laptop \ is \ 0.75.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS