Answer to Question #215427 in Statistics and Probability for Sphesihle Zuma

Question #215427
A bag contains 4 green, 3 black and 6 orange cards. A card sis drawn from the bag and kept, and then another card is drawn. Find the probability that
A, both cards will be orange
B, both cards will be black
C, the first card will be orange and the second will be black
D, neither will be orange
1
Expert's answer
2021-07-12T17:06:37-0400

A. "P\\left(both\\:cards\\:will\\:be\\:orange\\right)=\\frac{6}{13}\\times \\frac{5}{12}=\\frac{5}{26}"


B. "P\\left(both\\:cards\\:will\\:be\\:black\\right)=\\frac{3}{13}\\times \\frac{2}{12}=\\frac{1}{26}"


C. "P\\left(first\\:card\\:orange\\:and\\:second\\:black\\right)=\\frac{6}{13}\\times \\frac{3}{12}=\\frac{3}{26}"


D. The probability that neither of the cards will be orange means that either

(I). "P\\left(both\\:cards\\:will\\:be\\:black\\right)=\\frac{3}{13}\\times \\frac{2}{12}=\\frac{1}{26}"

or

(II). "P\\left(both\\:cards\\:will\\:be\\:green\\right)=\\frac{4}{13}\\times \\frac{3}{12}=\\frac{1}{13}"

or

(III). "P\\left(first\\:card\\:will\\:be\\:green\\:and\\:second\\:black\\right)=\\frac{4}{13}\\times \\frac{3}{12}=\\frac{1}{13}"

or

(IV). "\\:\\:P\\left(first\\:card\\:will\\:be\\:black\\:and\\:second\\:green\\right)=\\frac{3}{13}\\times \\:\\frac{4}{12}=\\frac{1}{13}"


"P\\left(neither\\:of\\:the\\:cards\\:will\\:be\\:orange\\right)=\\frac{1}{26}+\\frac{1}{13}+\\frac{1}{13}+\\frac{1}{13}=\\frac{7}{26}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog