A. "P\\left(both\\:cards\\:will\\:be\\:orange\\right)=\\frac{6}{13}\\times \\frac{5}{12}=\\frac{5}{26}"
B. "P\\left(both\\:cards\\:will\\:be\\:black\\right)=\\frac{3}{13}\\times \\frac{2}{12}=\\frac{1}{26}"
C. "P\\left(first\\:card\\:orange\\:and\\:second\\:black\\right)=\\frac{6}{13}\\times \\frac{3}{12}=\\frac{3}{26}"
D. The probability that neither of the cards will be orange means that either
(I). "P\\left(both\\:cards\\:will\\:be\\:black\\right)=\\frac{3}{13}\\times \\frac{2}{12}=\\frac{1}{26}"
or
(II). "P\\left(both\\:cards\\:will\\:be\\:green\\right)=\\frac{4}{13}\\times \\frac{3}{12}=\\frac{1}{13}"
or
(III). "P\\left(first\\:card\\:will\\:be\\:green\\:and\\:second\\:black\\right)=\\frac{4}{13}\\times \\frac{3}{12}=\\frac{1}{13}"
or
(IV). "\\:\\:P\\left(first\\:card\\:will\\:be\\:black\\:and\\:second\\:green\\right)=\\frac{3}{13}\\times \\:\\frac{4}{12}=\\frac{1}{13}"
"P\\left(neither\\:of\\:the\\:cards\\:will\\:be\\:orange\\right)=\\frac{1}{26}+\\frac{1}{13}+\\frac{1}{13}+\\frac{1}{13}=\\frac{7}{26}"
Comments
Leave a comment