"\\begin{matrix}\n \\text{Number of} & \\text{Number of} & \\text{Total number of} \\\\\n \\text{Female\\ \\ \\ \\ \\ \\ } & \\text{male\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ } & \\text{employees\\ \\ \\ \\ \\ \\ \\ \\ \\ } \\\\\n\\text{employees} & \\text{employees} & \\text{} \n\\end{matrix}"
"\\begin{matrix}\n 800 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 7200\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8000 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 120 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1480\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 920 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8680\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 9600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n\\end{matrix}"
We know that,
Observed value is represented by O which is given
and expected value is represented by E
So,
"\\\\\\ \\\\\\ \\\\\\\\ E_1=\\dfrac{920\\times8000}{9600}=766.7"
"E_2= \\dfrac{8680\\times8000}{9600}=7233.3\\\\"
"E_3= \\dfrac{920\\times1600}{9600}=153.3"
"\\\\""\\\\\\ E_4=\\dfrac{8680\\times1600}{9600}=1446.7"
now,
"\\begin{matrix}\n \\text{Number of} & \\text{Number of} & \\text{Total number of} \\\\\n \\text{Female\\ \\ \\ \\ \\ \\ } & \\text{male\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ } & \\text{employees\\ \\ \\ \\ \\ \\ \\ \\ \\ } \\\\\n\\text{employees} & \\text{employees} & \\text{} \n\\end{matrix}""\\begin{matrix}\n 766.7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 7233.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8000 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 153.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1446.7\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 920 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8680\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 9600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n\\end{matrix}"
Finally the table will be :
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c :c}\n O & E & O-E & (O-E)^2 & \\dfrac{(O-E)^2}{E} \\\\ \\hline\n 800 & 766.7 & 33.3 & 1108.9 & 1.45 \\\\\n120 & 153.3 & -33.3 & 1108.9 & 7.23 \\\\\n7200 & 7233.3 & 33.3 & 1108.9 & 0.15 \\\\\n1480 & 1446.7 & 33.3 & 1108.9 & 0.77 \\\\\n \\hdashline\n & & & Total & 9.60\n\\end{array}"
The degree of freedom "=(R-1)(C-1)=(2-1)(2-1)=1"
The critical value of "\\chi^2" at "\\alpha=0.05" for "1" d.f. 3.84 (given in question)
Since the calculated value of "\\chi^2" that is "\\chi_{cal}^2=" "9.60" is greater than the critical value of "\\chi^2" at "\\alpha=0.05" for "1" d.f. that is "(3.841)," then the null hypothesis is rejected and the alternative hypothesis is accepted.
Hence we can say that there is a distinction is made in appointment on the basis of sex.
Comments
Leave a comment