Question #211695

1.      (i) Use normal approximation to a Binomial Distribution (X) having n=500 trials and p = 0.025 for finding out:

(a)   P(X>10);                              (b) P(X<18)       (c) P(X>21)               (d) P(9<X<14)    (4)

        



1
Expert's answer
2021-07-05T04:12:41-0400

Binomial distribution bin(n,p) can be estimated using a normal distribution norm(np,np(1-p). However, correction for continuity should be carried out. Below is the correction factor table.

IfP(X=y)useP(y9.5<X<y+0.5)If \,P(X=y) \,use \,P(y-9.5<X<y+0.5)

IfP(X>y)useP(X>y+0.5)If \,P(X>y) \,use \,P(X>y+0.5)

IfP(X<)useP(X<y0.5)If \,P(X<) \,use \,P(X<y-0.5)

IfP(X)useP(X<y+0.5)If\, P(X\le) \,use\, P(X< y+0.5)

IfP(X)useP(X>y0.5)If \, P(X\ge) \,use \,P(X>y-0.5)

Before using normal approximation for binomial distribution the conditions np5np\ge5 or n(1p)5n(1-p)\ge5 should be met.

n=500n=500

P=0.025P=0.025


np=500×0.025=12.5np=500\times0.025=12.5

n(1p)=500×0.9725=487.5n(1-p)=500\times0.9725=487.5

Both np and n(1-p) are greater that 5. Thus, we can use normal approximation.

np=125np=125

np(1p)=3.49106\sqrt{np(1-p)}=3.49106

(a) P(X>10)P(X>10)

Correcting for continuity, P(X>10)P(X>10) becomes P(X>10.5)P(X>10.5) based on the above table.

P(>10.5)=1P(X<10.5)P(>10.5)=1-P(X<10.5)

=1P(z<10.512.53.49106)=1-P(z<\frac{10.5-12.5}{3.49106})

=1P(z<0.573)=1-P(z<-0.573)

=10.28336=1-0.28336

=0.71664=0.71664

(b). P(X<18)P(X<18)

Correcting for continuity becomes P(X<17.5)P(X<17.5)

P(X<17.5)=P(z<17.512.53.49106)P(X<17.5)=P(z<\frac{17.5-12.5}{3.49106})

=P(z<1.432)=P(z<1.432)

=0.924=0.924

(c) P(X>21)P(X>21)

Correcting for continuity, P(X>21)P(X>21) becomes P(X>21.5)P(X>21.5)

P(>21.5)=1P(X<21.5)P(>21.5)=1-P(X<21.5)

=1P(z<21.512.53.49106)=1-P(z<\frac{21.5-12.5}{3.49106})

=1P(z<2.578)=1-P(z<2.578)

=10.995=1-0.995

0.0050.005

(d) P(9<X<14)P(9<X<14)

P(9<X<14)=P(X<14)P(X<9)P(9<X<14)=P(X<14)-P(X<9)

Correcting for continuity, P(9<X<14)P(9<X<14) becomes P(X<13.5)P(X<8.5)P(X<13.5)-P(X<8.5)

P(X<13.5)P(X<8.5)=P(z<13.512.53.49106)P(z<8.512.53.49106)P(X<13.5)-P(X<8.5)=P(z<\frac{13.5-12.5}{3.49106})-P(z<\frac{8.5-12.5}{3.49106})

=P(z<0.286)P(z<1.146)=P(z<0.286)-P(z<-1.146)

=0.61270.1259=0.6127-0.1259

=0.4868=0.4868


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS