Answer to Question #211617 in Statistics and Probability for Vivek

Question #211617

Following is the distribution of marks (out of 25) obtained by 10 students in Physics and Mathematics. XY Y X No. 1 2 3 4 Mathematics (Y) 21 23 14 23 17 18 16 19 20 23 194 Physics (X) 18 20 11 20 14 15 13 16 17 20 164 5 6 324 400 121 400 196 225 169 256 289 400 2780 441 529 196 529 289 324 256 361 400 529 3854 378 460 154 460 238 270 208 304 480 460 3412 7 8 9 10 Total Draw a scatter diagram for all the 10 students and calculate the correlation between marks of Physics and Mathematics.


1
Expert's answer
2021-06-29T13:33:56-0400
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n & X & Y & XY & X^2 & Y^2 \\\\ \\hline\n & 18 & 21 & 378 & 324 & 441 \\\\\n & 20 & 23 & 460 & 400 & 529 \\\\\n & 11 & 14 & 154 & 121 & 196 \\\\\n & 20 & 23 & 460 & 400 & 529 \\\\\n & 14 & 17 & 238 & 196 & 289 \\\\\n & 15 & 18 & 270 & 225 & 324 \\\\\n & 13 & 16 & 208 & 169 & 256 \\\\\n & 16 & 19 & 304 & 256 & 361 \\\\\n & 17 & 20 & 340 & 289 &400 \\\\\n & 20 & 23 & 460 & 400 & 529 \\\\\nTotal= & 164 & 194 & 3272 & 2780 & 3854 \\\\\n\\end{array}"


"\\bar{X}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nX_i=16.4"

"\\bar{Y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nY_i=19.4"

"SS_{XX}=\\displaystyle\\sum_{i=1}^nX_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)^2=90.4"

"SS_{XY}=\\displaystyle\\sum_{i=1}^nX_iY_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\displaystyle\\sum_{i=1}^nY_i)\n=90.4"

"SS_{YY}=\\displaystyle\\sum_{i=1}^nY_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nY_i)^2=90.4"

"m=\\dfrac{SS_{XY}}{SS_{XX}}=\\dfrac{90.4}{90.4}=1"

"n=\\bar{Y}-m\\bar{X}=19.4-1(16.4)=3"

The regression equation is:


"Y=3+X"



Correlation coefficient: "r=\\dfrac{SS_{XY}}{\\sqrt{SS_{XX}}\\sqrt{SS_{YY}}}=\\dfrac{90.4}{\\sqrt{90.4}\\sqrt{90.4}}=1"

Strong positive correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS