Let X X X is distributed according to the probability density function
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(x - \mu )}^2}}}{{2{\sigma ^2}}}}} f ( x ) = 2 π σ 1 e − 2 σ 2 ( x − μ ) 2 Then it's moment generation function
M X ( λ ) = E ( e λ X ) = ∫ − ∞ + ∞ f ( x ) e λ x d x {M_X}(\lambda ) = \mathbb{E}({e^{\lambda X}}) = \int\limits_{ - \infty }^{ + \infty } {f(x){e^{\lambda x}}dx} M X ( λ ) = E ( e λ X ) = − ∞ ∫ + ∞ f ( x ) e λ x d x
Let's evaluate this integral
∫ − ∞ + ∞ f ( x ) e λ x d x = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 + λ x d x \int\limits_{ - \infty }^{ + \infty } {f(x){e^{\lambda x}}dx} = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{{{{(x - \mu )}^2}}}{{2{\sigma ^2}}} + \lambda x}}dx} − ∞ ∫ + ∞ f ( x ) e λ x d x = 2 π σ 1 − ∞ ∫ + ∞ e − 2 σ 2 ( x − μ ) 2 + λ x d x At the first, complete the square in the power of the exponent
− ( x − μ ) 2 2 σ 2 + t x = − 1 2 σ 2 ( x − ( μ + λ σ 2 ) ) 2 + μ λ + λ 2 σ 2 2 - \frac{{{{(x - \mu )}^2}}}{{2{\sigma ^2}}} + tx = - \frac{1}{{2{\sigma ^2}}}{(x - (\mu + \lambda {\sigma ^2}))^2} + \mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2} − 2 σ 2 ( x − μ ) 2 + t x = − 2 σ 2 1 ( x − ( μ + λ σ 2 ) ) 2 + μ λ + 2 λ 2 σ 2 Then change the variable x − ( μ + λ σ 2 ) = ξ x - (\mu + \lambda {\sigma ^2}) = \xi x − ( μ + λ σ 2 ) = ξ , then d x = d ξ dx = d\xi d x = d ξ , limits do not change
M X ( λ ) = 1 2 π σ e μ λ + λ 2 σ 2 2 ∫ − ∞ + ∞ e − 1 2 σ 2 ξ 2 d ξ {M_X}(\lambda ) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{\mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2}}}\int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{1}{{2{\sigma ^2}}}{\xi ^2}}}d\xi } M X ( λ ) = 2 π σ 1 e μ λ + 2 λ 2 σ 2 − ∞ ∫ + ∞ e − 2 σ 2 1 ξ 2 d ξ We need only to evaluate I = ∫ − ∞ + ∞ e − 1 2 σ 2 ξ 2 d ξ I = \int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{1}{{2{\sigma ^2}}}{\xi ^2}}}d\xi } I = − ∞ ∫ + ∞ e − 2 σ 2 1 ξ 2 d ξ . Let rewrite it's square as a double integral at the whole R 2 {\mathbb{R}^2} R 2 plane
I 2 = ∫ − ∞ + ∞ e − 1 2 σ 2 ξ 2 d ξ ⋅ ∫ − ∞ + ∞ e − 1 2 σ 2 η 2 d η = ∬ R 2 e − 1 2 σ 2 ( ξ 2 + η 2 ) d ξ d η {I^2} = \int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{1}{{2{\sigma ^2}}}{\xi ^2}}}d\xi } \cdot \int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{1}{{2{\sigma ^2}}}{\eta ^2}}}d\eta } = \iint\limits_{{R^2}} {{e^{ - \frac{1}{{2{\sigma ^2}}}({\xi ^2} + {\eta ^2})}}d\xi d\eta } I 2 = − ∞ ∫ + ∞ e − 2 σ 2 1 ξ 2 d ξ ⋅ − ∞ ∫ + ∞ e − 2 σ 2 1 η 2 d η = R 2 ∬ e − 2 σ 2 1 ( ξ 2 + η 2 ) d ξ d η And choose polar coordinates ξ = r cos φ \xi = r\cos \varphi ξ = r cos φ , η = r sin φ \eta = r\sin \varphi η = r sin φ and d ξ d η = r d r d φ d\xi d\eta = rdrd\varphi d ξ d η = r d r d φ .
Then
I 2 = ∬ R 2 e − r 2 2 σ 2 r d r d φ = ∫ 0 2 π d φ ∫ 0 + ∞ r e − r 2 2 σ 2 d r {I^2} = \iint\limits_{{\mathbb{R}^2}} {{e^{ - \frac{{{r^2}}}{{2{\sigma ^2}}}}}rdrd\varphi } = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{ + \infty } {r{e^{ - \frac{{{r^2}}}{{2{\sigma ^2}}}}}dr} I 2 = R 2 ∬ e − 2 σ 2 r 2 r d r d φ = 0 ∫ 2 π d φ 0 ∫ + ∞ r e − 2 σ 2 r 2 d r and
I 2 = 2 π ∫ 0 + ∞ r e − r 2 2 σ 2 d r = 2 π σ 2 ∫ 0 + ∞ e − r 2 2 σ 2 d ( r 2 2 σ 2 ) = − 2 π σ 2 e − r 2 2 σ 2 ∣ 0 + ∞ = 2 π σ 2 {I^2} = 2\pi \int\limits_0^{ + \infty } {r{e^{ - \frac{{{r^2}}}{{2{\sigma ^2}}}}}dr} = 2\pi {\sigma ^2}\int\limits_0^{ + \infty } {{e^{ - \frac{{{r^2}}}{{2{\sigma ^2}}}}}d} (\frac{{{r^2}}}{{2{\sigma ^2}}}) = - 2\pi {\sigma ^2}\left. {{e^{ - \frac{{{r^2}}}{{2{\sigma ^2}}}}}} \right|_0^{ + \infty } = 2\pi {\sigma ^2} I 2 = 2 π 0 ∫ + ∞ r e − 2 σ 2 r 2 d r = 2 π σ 2 0 ∫ + ∞ e − 2 σ 2 r 2 d ( 2 σ 2 r 2 ) = − 2 π σ 2 e − 2 σ 2 r 2 ∣ ∣ 0 + ∞ = 2 π σ 2
We get
∫ − ∞ + ∞ e − 1 2 σ 2 ξ 2 d ξ = 2 π σ \int\limits_{ - \infty }^{ + \infty } {{e^{ - \frac{1}{{2{\sigma ^2}}}{\xi ^2}}}d\xi } = \sqrt {2\pi } \sigma − ∞ ∫ + ∞ e − 2 σ 2 1 ξ 2 d ξ = 2 π σ and thus
M X ( λ ) = e μ λ + λ 2 σ 2 2 {M_X}(\lambda ) = {e^{\mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2}}} M X ( λ ) = e μ λ + 2 λ 2 σ 2 Now, using that
To calculate expected value and variance we can use that
E ( X n ) = M X ( n ) ( 0 ) \mathbb{E}({X^n}) = M_X^{(n)}(0) E ( X n ) = M X ( n ) ( 0 ) Let's calculate the expected value (mean value)
E X = d M X d λ ∣ λ = 0 = ( μ + λ σ 2 ) e μ λ + λ 2 σ 2 2 ∣ λ = 0 = μ \mathbb{E}X = {\left. {\frac{{dM_X}}{{d\lambda }}} \right|_{\lambda = 0}} = {\left. {(\mu + \lambda {\sigma ^2}){e^{\mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2}}}} \right|_{\lambda = 0}} = \mu E X = d λ d M X ∣ ∣ λ = 0 = ( μ + λ σ 2 ) e μ λ + 2 λ 2 σ 2 ∣ ∣ λ = 0 = μ To calculate variance, let's calculate the second moment at first
E X 2 = d 2 M X d λ 2 ∣ λ = 0 = [ σ 2 e μ λ + λ 2 σ 2 2 + ( μ + λ σ 2 ) 2 e μ λ + λ 2 σ 2 2 ] ∣ λ = 0 = μ 2 + σ 2 \mathbb{E}{X^2} = {\left. {\frac{{{d^2}M_X}}{{d{\lambda ^2}}}} \right|_{\lambda = 0}} = [{\left. {{\sigma ^2}{e^{\mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2}}} + {{(\mu + \lambda {\sigma ^2})}^2}{e^{\mu \lambda + \frac{{{\lambda ^2}{\sigma ^2}}}{2}}}]} \right|_{\lambda = 0}} = {\mu ^2} + {\sigma ^2} E X 2 = d λ 2 d 2 M X ∣ ∣ λ = 0 = [ σ 2 e μ λ + 2 λ 2 σ 2 + ( μ + λ σ 2 ) 2 e μ λ + 2 λ 2 σ 2 ] ∣ ∣ λ = 0 = μ 2 + σ 2 Now calculate the variance
Var X = E X 2 − E 2 X = σ 2 \operatorname{Var} X = E{X^2} - {E^2}X = {\sigma ^2} Var X = E X 2 − E 2 X = σ 2
Comments