Let "X" is distributed according to the probability density function
"f(x) = \\frac{1}{{\\sqrt {2\\pi } \\sigma }}{e^{ - \\frac{{{{(x - \\mu )}^2}}}{{2{\\sigma ^2}}}}}"Then it's moment generation function
"{M_X}(\\lambda ) = \\mathbb{E}({e^{\\lambda X}}) = \\int\\limits_{ - \\infty }^{ + \\infty } {f(x){e^{\\lambda x}}dx}"
Let's evaluate this integral
"\\int\\limits_{ - \\infty }^{ + \\infty } {f(x){e^{\\lambda x}}dx} = \\frac{1}{{\\sqrt {2\\pi } \\sigma }}\\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{{{{(x - \\mu )}^2}}}{{2{\\sigma ^2}}} + \\lambda x}}dx}"At the first, complete the square in the power of the exponent
"- \\frac{{{{(x - \\mu )}^2}}}{{2{\\sigma ^2}}} + tx = - \\frac{1}{{2{\\sigma ^2}}}{(x - (\\mu + \\lambda {\\sigma ^2}))^2} + \\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}"Then change the variable "x - (\\mu + \\lambda {\\sigma ^2}) = \\xi" , then "dx = d\\xi" , limits do not change
"{M_X}(\\lambda ) = \\frac{1}{{\\sqrt {2\\pi } \\sigma }}{e^{\\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}}}\\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{1}{{2{\\sigma ^2}}}{\\xi ^2}}}d\\xi }"We need only to evaluate "I = \\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{1}{{2{\\sigma ^2}}}{\\xi ^2}}}d\\xi }" . Let rewrite it's square as a double integral at the whole "{\\mathbb{R}^2}" plane
"{I^2} = \\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{1}{{2{\\sigma ^2}}}{\\xi ^2}}}d\\xi } \\cdot \\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{1}{{2{\\sigma ^2}}}{\\eta ^2}}}d\\eta } = \\iint\\limits_{{R^2}} {{e^{ - \\frac{1}{{2{\\sigma ^2}}}({\\xi ^2} + {\\eta ^2})}}d\\xi d\\eta }"And choose polar coordinates "\\xi = r\\cos \\varphi" , "\\eta = r\\sin \\varphi" and "d\\xi d\\eta = rdrd\\varphi" .
Then
"{I^2} = \\iint\\limits_{{\\mathbb{R}^2}} {{e^{ - \\frac{{{r^2}}}{{2{\\sigma ^2}}}}}rdrd\\varphi } = \\int\\limits_0^{2\\pi } {d\\varphi } \\int\\limits_0^{ + \\infty } {r{e^{ - \\frac{{{r^2}}}{{2{\\sigma ^2}}}}}dr}"and
"{I^2} = 2\\pi \\int\\limits_0^{ + \\infty } {r{e^{ - \\frac{{{r^2}}}{{2{\\sigma ^2}}}}}dr} = 2\\pi {\\sigma ^2}\\int\\limits_0^{ + \\infty } {{e^{ - \\frac{{{r^2}}}{{2{\\sigma ^2}}}}}d} (\\frac{{{r^2}}}{{2{\\sigma ^2}}}) = - 2\\pi {\\sigma ^2}\\left. {{e^{ - \\frac{{{r^2}}}{{2{\\sigma ^2}}}}}} \\right|_0^{ + \\infty } = 2\\pi {\\sigma ^2}"
We get
"\\int\\limits_{ - \\infty }^{ + \\infty } {{e^{ - \\frac{1}{{2{\\sigma ^2}}}{\\xi ^2}}}d\\xi } = \\sqrt {2\\pi } \\sigma"and thus
"{M_X}(\\lambda ) = {e^{\\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}}}"Now, using that
To calculate expected value and variance we can use that
"\\mathbb{E}({X^n}) = M_X^{(n)}(0)"Let's calculate the expected value (mean value)
"\\mathbb{E}X = {\\left. {\\frac{{dM_X}}{{d\\lambda }}} \\right|_{\\lambda = 0}} = {\\left. {(\\mu + \\lambda {\\sigma ^2}){e^{\\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}}}} \\right|_{\\lambda = 0}} = \\mu"To calculate variance, let's calculate the second moment at first
"\\mathbb{E}{X^2} = {\\left. {\\frac{{{d^2}M_X}}{{d{\\lambda ^2}}}} \\right|_{\\lambda = 0}} = [{\\left. {{\\sigma ^2}{e^{\\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}}} + {{(\\mu + \\lambda {\\sigma ^2})}^2}{e^{\\mu \\lambda + \\frac{{{\\lambda ^2}{\\sigma ^2}}}{2}}}]} \\right|_{\\lambda = 0}} = {\\mu ^2} + {\\sigma ^2}"Now calculate the variance
"\\operatorname{Var} X = E{X^2} - {E^2}X = {\\sigma ^2}"
Comments
Leave a comment