3.1 Consider the discrete random variable ( Y ) with the following probability distribution:
P Y y y ( ) 0.05( 1) = = + for y = 0,1,2,3,9
3.1.1 Express the probability distribution in tabular form
3.1.2 Find the variance of 2Y + 4
"p(Y=0)=0.05(1+0)=0.05"
"p(Y=1)=0.05(1+1)=0.10"
"p(Y=2)=0.05(1+2)=0.15"
"p(Y=9)=0.05(1+9)=0.50"
Check
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n y & 0 & 1 & 2 & 3 & 9 \\\\ \\hline \n p(y) & 0.05 & 0.10 & 0.15 & 0.20 & 0.50\n\\end{array}"
"Var(Y)=E(Y^2)-\\big(E(Y)\\big)^2"
"E(Y)=\\displaystyle\\sum_{i=1}^5y_ip(y_i)=0(0.05)+1(0.10)"
"+2(0.15)+3(0.20)+9(0.50)=5.50"
"=5.50"
"E(Y^2)=\\displaystyle\\sum_{i=1}^5y_i^2p(y_i)=(0)^2(0.05)+(1)^2(0.10)"
"+(2)^2(0.15)+(3)^2(0.20)+(9)^2(0.50)=43.00"
Or
"+(1-5.50)^2(0.10)+(2-5.50)^2(0.15)"
"+(3-5.50)^2(0.20)+(9-5.50)^2(0.50)=12.75"
Comments
Leave a comment