Let x be a random variable representing the number of tails which occur in tossing 5 coins
We will assume that the probability of getting heads and tails is the same: "p = q = \\frac{1}{2}".
Using Bernoulli's formula, we find the probability that 0, 1, 2, 3, 4, and 5 tails will land:
"P(X=1)=\\dbinom{5}{1}\\big(\\dfrac{1}{2}\\big)^1 \\big(\\dfrac{1}{2}\\big)^{5-1}=\\dfrac{5}{32}"
"P(X=2)=\\dbinom{5}{2}\\big(\\dfrac{1}{2}\\big)^2 \\big(\\dfrac{1}{2}\\big)^{5-2}=\\dfrac{10}{32}"
"P(X=3)=\\dbinom{5}{3}\\big(\\dfrac{1}{2}\\big)^3 \\big(\\dfrac{1}{2}\\big)^{5-3}=\\dfrac{10}{32}"
"P(X=4)=\\dbinom{5}{4}\\big(\\dfrac{1}{2}\\big)^4 \\big(\\dfrac{1}{2}\\big)^{5-4}=\\dfrac{5}{32}"
"P(X=5)=\\dbinom{5}{5}\\big(\\dfrac{1}{2}\\big)^5 \\big(\\dfrac{1}{2}\\big)^{5-5}=\\dfrac{1}{32}"
We get the distribution of the number of tails "X"
Comments
Leave a comment