Question #208720

Let x be a random variable representing the number of tails which occur in tossing 5 coins


1
Expert's answer
2021-06-22T07:09:44-0400

We will assume that the probability of getting heads and tails is the same: p=q=12p = q = \frac{1}{2}.

Using Bernoulli's formula, we find the probability that 0, 1, 2, 3, 4, and 5 tails will land:


P(X=0)=(50)(12)0(12)50=132P(X=0)=\dbinom{5}{0}\big(\dfrac{1}{2}\big)^0 \big(\dfrac{1}{2}\big)^{5-0}=\dfrac{1}{32}

P(X=1)=(51)(12)1(12)51=532P(X=1)=\dbinom{5}{1}\big(\dfrac{1}{2}\big)^1 \big(\dfrac{1}{2}\big)^{5-1}=\dfrac{5}{32}

P(X=2)=(52)(12)2(12)52=1032P(X=2)=\dbinom{5}{2}\big(\dfrac{1}{2}\big)^2 \big(\dfrac{1}{2}\big)^{5-2}=\dfrac{10}{32}

P(X=3)=(53)(12)3(12)53=1032P(X=3)=\dbinom{5}{3}\big(\dfrac{1}{2}\big)^3 \big(\dfrac{1}{2}\big)^{5-3}=\dfrac{10}{32}

P(X=4)=(54)(12)4(12)54=532P(X=4)=\dbinom{5}{4}\big(\dfrac{1}{2}\big)^4 \big(\dfrac{1}{2}\big)^{5-4}=\dfrac{5}{32}

P(X=5)=(55)(12)5(12)55=132P(X=5)=\dbinom{5}{5}\big(\dfrac{1}{2}\big)^5 \big(\dfrac{1}{2}\big)^{5-5}=\dfrac{1}{32}

We get the distribution of the number of tails XX


x012345p(x)13253210321032532132\def\arraystretch{1.5} \begin{array}{c:c} x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \\ p(x) & \dfrac{1}{32} & \dfrac{5}{32} & \dfrac{10}{32} & \dfrac{10}{32} & \dfrac{5}{32} & \dfrac{1}{32} \end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS