Answer to Question #208741 in Statistics and Probability for Chalo

Question #208741

Consider the discrete random variable (Y) with the following probability.P(Y=y)=0.05(y+1) for y=0,1,2,3,9


1
Expert's answer
2021-06-23T08:22:35-0400
p(Y=y)=0.05(1+y),y=0,1,2,3,9p(Y=y)=0.05(1+y), y=0,1,2,3,9

p(Y=0)=0.05(1+0)=0.05p(Y=0)=0.05(1+0)=0.05

p(Y=1)=0.05(1+1)=0.10p(Y=1)=0.05(1+1)=0.10

p(Y=2)=0.05(1+2)=0.15p(Y=2)=0.05(1+2)=0.15


p(Y=3)=0.05(1+3)=0.20p(Y=3)=0.05(1+3)=0.20

p(Y=9)=0.05(1+9)=0.50p(Y=9)=0.05(1+9)=0.50

Check


0.05+0.10+0.15+0.20+0.50=10.05+0.10+0.15+0.20+0.50=1

y01239p(y)0.050.100.150.200.50\def\arraystretch{1.5} \begin{array}{c:c} y & 0 & 1 & 2 & 3 & 9 \\ \hline p(y) & 0.05 & 0.10 & 0.15 & 0.20 & 0.50 \end{array}

Var(Y)=E(Y2)(E(Y))2Var(Y)=E(Y^2)-\big(E(Y)\big)^2

E(Y)=i=15yip(yi)=0(0.05)+1(0.10)E(Y)=\displaystyle\sum_{i=1}^5y_ip(y_i)=0(0.05)+1(0.10)

+2(0.15)+3(0.20)+9(0.50)=5.50+2(0.15)+3(0.20)+9(0.50)=5.50

=5.50=5.50

E(Y2)=i=15yi2p(yi)=(0)2(0.05)+(1)2(0.10)E(Y^2)=\displaystyle\sum_{i=1}^5y_i^2p(y_i)=(0)^2(0.05)+(1)^2(0.10)

+(2)2(0.15)+(3)2(0.20)+(9)2(0.50)=43.00+(2)^2(0.15)+(3)^2(0.20)+(9)^2(0.50)=43.00


Var(Y)=43.00(5.50)2=12.75Var(Y)=43.00-\big(5.50\big)^2=12.75

Or


Var(Y)=i=15(yiμ)2p(yi)=(05.50)2(0.05)Var(Y)=\displaystyle\sum_{i=1}^5(y_i-\mu)^2p(y_i)=(0-5.50)^2(0.05)

+(15.50)2(0.10)+(25.50)2(0.15)+(1-5.50)^2(0.10)+(2-5.50)^2(0.15)

+(35.50)2(0.20)+(95.50)2(0.50)=12.75+(3-5.50)^2(0.20)+(9-5.50)^2(0.50)=12.75


Var(2Y+4)=22Var(Y)=22(12.75)=51.0Var(2Y+4)=2^2Var(Y)=2^2(12.75)=51.0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment