1. We have population values 1 , 2 , 7 , 8 , 9 , 10 , 12 1,2,7,8,9,10,12 1 , 2 , 7 , 8 , 9 , 10 , 12 population size N = 7 N=7 N = 7 and sample size n = 5. n=5. n = 5.
Mean
μ = 1 + 2 + 7 + 8 + 9 + 10 + 12 7 = 7 \mu=\dfrac{1+2+7+8+9+10+12}{7}=7 μ = 7 1 + 2 + 7 + 8 + 9 + 10 + 12 = 7
Variance
σ 2 = 1 7 ( ( 1 − 7 ) 2 + ( 2 − 7 ) 2 + ( 7 − 7 ) 2 \sigma^2=\dfrac{1}{7}\big((1-7)^2+(2-7)^2+(7-7)^2 σ 2 = 7 1 ( ( 1 − 7 ) 2 + ( 2 − 7 ) 2 + ( 7 − 7 ) 2
( 8 − 7 ) 2 + ( 9 − 7 ) 2 + ( 10 − 7 ) 2 + ( 12 − 7 ) 2 ) (8-7)^2+(9-7)^2+(10-7)^2+(12-7)^2\big) ( 8 − 7 ) 2 + ( 9 − 7 ) 2 + ( 10 − 7 ) 2 + ( 12 − 7 ) 2 )
= 100 7 =\dfrac{100}{7} = 7 100
Standard deviation
σ = σ 2 = 100 7 ≈ 3.779645 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{100}{7}}\approx3.779645 σ = σ 2 = 7 100 ≈ 3.779645
2. The number of possible samples which can be drawn without replacement is
( N n ) = ( 7 5 ) = 21 \dbinom{N}{n}=\dbinom{7}{5}=21 ( n N ) = ( 5 7 ) = 21 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 1 , 2 , 7 , 8 , 9 5.4 2 1 , 2 , 7 , 8 , 10 5.6 3 1 , 2 , 7 , 8 , 12 6.0 4 1 , 2 , 7 , 9 , 10 5.8 5 1 , 2 , 7 , 9 , 12 6.2 6 1 , 2 , 7 , 10 , 12 6.4 7 1 , 2 , 8 , 9 , 10 6.0 8 1 , 2 , 8 , 9 , 12 6.4 9 1 , 2 , 8 , 10 , 12 6.6 10 1 , 2 , 9 , 10 , 12 6.8 11 1 , 7 , 8 , 9 , 10 7.0 12 1 , 7 , 8 , 9 , 12 7.4 13 1 , 7 , 8 , 10 , 12 7.6 14 1 , 7 , 9 , 10 , 12 7.8 15 1 , 8 , 9 , 10 , 12 8.0 16 2 , 7 , 8 , 9 , 10 7.2 17 2 , 7 , 8 , 9 , 12 7.6 18 2 , 7 , 8 , 10 , 12 7.8 19 2 , 7 , 9 , 10 , 12 8.0 20 2 , 8 , 9 , 10 , 12 8.2 21 7 , 8 , 9 , 10 , 12 9.2 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 1,2, 7, 8, 9 & 5.4 \\
\hdashline
2 & 1,2, 7, 8, 10 & 5.6 \\
\hdashline
3 & 1,2, 7,8,12 & 6.0 \\
\hdashline
4 & 1,2, 7, 9, 10 & 5.8\\
\hdashline
5 & 1,2,7,9,12 & 6.2 \\
\hdashline
6 & 1,2, 7, 10,12 & 6.4 \\
\hline
7 & 1,2,8,9,10 & 6.0 \\
\hline
8 & 1,2,8,9,12 & 6.4\\
\hline
9 & 1,2,8,10,12 & 6.6 \\
\hline
10 & 1,2,9,10,12 & 6.8 \\
\hline
11 & 1,7,8,9,10 & 7.0 \\
\hline
12 & 1,7,8,9,12 & 7.4 \\
\hline
13 & 1,7, 8,10,12 & 7.6 \\
\hline
14 & 1,7,9,10,12 & 7.8 \\
\hline
15 & 1,8,9,10,12& 8.0 \\
\hline
16 & 2,7,8,9,10& 7.2 \\
\hline
17 & 2,7,8,9,12 & 7.6 \\
\hline
18 & 2,7,8,10,12 & 7.8\\
\hline
19 & 2,7,9,10,12 & 8.0 \\
\hline
20 & 2,8,9,10,12 & 8.2 \\
\hline
21 & 7,8, 9, 10, 12 & 9.2 \\
\hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 S am pl e v a l u es 1 , 2 , 7 , 8 , 9 1 , 2 , 7 , 8 , 10 1 , 2 , 7 , 8 , 12 1 , 2 , 7 , 9 , 10 1 , 2 , 7 , 9 , 12 1 , 2 , 7 , 10 , 12 1 , 2 , 8 , 9 , 10 1 , 2 , 8 , 9 , 12 1 , 2 , 8 , 10 , 12 1 , 2 , 9 , 10 , 12 1 , 7 , 8 , 9 , 10 1 , 7 , 8 , 9 , 12 1 , 7 , 8 , 10 , 12 1 , 7 , 9 , 10 , 12 1 , 8 , 9 , 10 , 12 2 , 7 , 8 , 9 , 10 2 , 7 , 8 , 9 , 12 2 , 7 , 8 , 10 , 12 2 , 7 , 9 , 10 , 12 2 , 8 , 9 , 10 , 12 7 , 8 , 9 , 10 , 12 S am pl e m e an ( X ˉ ) 5.4 5.6 6.0 5.8 6.2 6.4 6.0 6.4 6.6 6.8 7.0 7.4 7.6 7.8 8.0 7.2 7.6 7.8 8.0 8.2 9.2
3.
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 5.4 1 1 / 21 5.4 / 21 29.16 / 21 5.6 1 1 / 21 5.6 / 21 31.36 / 21 5.8 1 1 / 21 5.8 / 21 33.64 / 21 6.0 2 2 / 21 12.0 / 21 72 / 21 6.2 1 1 / 21 6.2 / 21 38.44 / 21 6.4 2 2 / 21 12.8 / 21 81.92 / 21 6.6 1 1 / 21 6.6 / 21 43.56 / 21 6.8 1 1 / 21 6.8 / 21 46.24 / 21 7.0 1 1 / 21 7.0 / 21 49 / 21 7.2 1 1 / 21 7.2 / 21 51.84 / 21 7.4 1 1 / 21 7.4 / 21 54.76 / 21 7.6 2 2 / 21 15.2 / 21 115.52 / 21 7.8 2 2 / 21 15.6 / 21 121.68 / 21 8.0 2 2 / 21 16.0 / 21 128 / 21 8.2 1 1 / 21 8.2 / 21 67.24 / 21 9.2 1 1 / 21 9.2 / 21 84.64 / 21 T o t a l 21 1 7 1049 / 21 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
5.4 & 1 & 1/21 & 5.4/21 & 29.16/21 \\
\hdashline
5.6 & 1 & 1/21 & 5.6/21 & 31.36/21 \\
\hdashline
5.8 & 1 & 1/21& 5.8/21 & 33.64/21\\
\hdashline
6.0 & 2 & 2/21 & 12.0/21 & 72/21 \\
\hdashline
6.2 & 1 & 1/21 &6.2/21 & 38.44/21\\
\hdashline
6.4 & 2 & 2/21 & 12.8/21 & 81.92/21\\
\hdashline
6.6 & 1 & 1/21 & 6.6/21 & 43.56/21\\
\hdashline
6.8 & 1 & 1/21 & 6.8/21 & 46.24/21 \\
\hdashline
7.0 & 1 & 1/21 & 7.0/21 & 49/21\\
\hdashline
7.2 & 1 & 1/21 & 7.2/21 & 51.84/21 \\
\hdashline
7.4 & 1& 1/21 & 7.4/21 & 54.76/21\\
\hdashline
7.6 & 2 & 2/21 & 15.2/21 & 115.52/21\\
\hdashline
7.8 & 2 & 2/21 & 15.6/21 & 121.68/21\\
\hdashline
8.0 & 2 & 2/21 & 16.0/21 & 128/21\\
\hdashline
8.2 & 1& 1/21 & 8.2/21 & 67.24/21\\
\hdashline
9.2 & 1 & 1/21 & 9.2/21 & 84.64/21\\
\hdashline
Total & 21 & 1 & 7 & 1049/21 \\ \hline
\end{array} X ˉ 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 9.2 T o t a l f 1 1 1 2 1 2 1 1 1 1 1 2 2 2 1 1 21 f ( X ˉ ) 1/21 1/21 1/21 2/21 1/21 2/21 1/21 1/21 1/21 1/21 1/21 2/21 2/21 2/21 1/21 1/21 1 X ˉ f ( X ˉ ) 5.4/21 5.6/21 5.8/21 12.0/21 6.2/21 12.8/21 6.6/21 6.8/21 7.0/21 7.2/21 7.4/21 15.2/21 15.6/21 16.0/21 8.2/21 9.2/21 7 X ˉ 2 f ( X ˉ ) 29.16/21 31.36/21 33.64/21 72/21 38.44/21 81.92/21 43.56/21 46.24/21 49/21 51.84/21 54.76/21 115.52/21 121.68/21 128/21 67.24/21 84.64/21 1049/21
4.
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 7 E(\bar{X})=\sum\bar{X}f(\bar{X})=7 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 7 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 7 = μ E(\bar{X})=7=\mu E ( X ˉ ) = 7 = μ
5.
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 1049 21 − ( 7 ) 2 = 20 21 =\dfrac{1049}{21}-(7)^2=\dfrac{20}{21} = 21 1049 − ( 7 ) 2 = 21 20
V a r ( X ˉ ) = 20 21 ≈ 0.975900 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{20}{21}}\approx0.975900 Va r ( X ˉ ) = 21 20 ≈ 0.975900
Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 100 7 5 ( 7 − 5 7 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{\dfrac{100}{7}}{5}(\dfrac{7-5}{7-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 5 7 100 ( 7 − 1 7 − 5 )
= 20 21 , T r u e =\dfrac{20}{21}, True = 21 20 , T r u e
Comments