Consider all possible samples of size 4 (𝑛=4) taken with replacement from a population consisting of
the values 1, 3, and 5.
I. Compute the following:
1. Population Mean (μ)
2. Population Variance (𝜎²)
3. Population Standard Deviation (σ)
4. Mean of Sample Mean (μx̅)
5. Variance of Sample Mean (σ²x̅)
6. Standard Deviation of Sample Mean (σx̅)
1.
"\\mu=\\frac{1+3+5}{3}=3"
2.
"\\sigma^2=\\frac{\\sum(x_i-\\mu)^2}{n}=\\frac{2^2+2^2}{3}=8\/3"
3.
"\\sigma=\\sqrt{8\/3}=1.63"
4.
"\\mu(\\overline {x})=\\frac{1+1.5+2+2.5+3+2+3+4+5+3.5+4+4.5}{12}=2.8"
5.
"\\sigma^2(\\overline {x})=\\frac{1.8^2+1.3^2+0.8^2+0.3^2+0.2^2+0.8^2+0.2^2+0.2^2+2.2^2+0.7^2+1.2^2+1.7^2}{12}=1.34"
6.
"\\sigma(\\overline {x})=\\sqrt{1.34}=1.16"
Comments
Leave a comment