Let X be a binomial variate with n=100, p=0.1. Find the approximate value of
P(10 ≤X≤ 12) using:
(i) normal distribution
(ii)poisson distribution
[You may like to use the following values.
P(Z ≤ 0.67)=0.7486, P(Z ≤ 0.33)=0.6293, P(Z ≤0)=0.5]
We have that
n=100, p=0.1
P(10 ≤ X ≤ 12) - ?
i) Normal distribution
Mean "\\mu = np= 100\\cdot0.1=10"
Standard deviation "\\sigma = \\sqrt{np(1-p)}=\\sqrt{100\\cdot0.1(1-0.1)}=\\sqrt{10\\cdot0.9}=\\sqrt9=3"
"P(10 \u2264 X \u2264 12)=F(\\frac{12-\\mu}{\\sigma})-F(\\frac{10-\\mu}{\\sigma})=F(\\frac{12-10}{3})-F(\\frac{10-10}{3})=F(\\frac{2}{3})-F(0)\\approx 0.7486 - 0.5 = 0.2486"
ii) Poisson distribution
"\\lambda=np=100\\cdot0.1=10"
The poisson probability is calculated by the formula
"P(10 \u2264 X \u2264 12)=P(10)+P(11)+P(12)=\\frac{10^{10}e^{-10}}{10!}+\\frac{10^{11}e^{-10}}{11!}+\\frac{10^{12}e^{-10}}{12!}=0.12511+0.11374+0.09478=0.33363"
Comments
Leave a comment