The diameter of an electric cable, Say X, is assumed to be continuous random variable with p.d.f f(x)=6x(1-x), 0<x<1.
A. Show that f(x) is a p.d.f.
B. Determine a number b such that P(X<b)= P(X >b).
C. Find the mean of x.
A.
Function f(x) is a probability density function in range a to b if
"\\int^b_af(x)dx=1"
Then:
"\\int^1_0(6x(1-x))dx=(3x^2-2x^3)|^1_0=3-2=1"
C.
"E(X)=\\int^b_axf(x)dx=\\int^1_0x(6x(1-x))dx=(2x^3-1.5x^4)|^1_0=2-1.5=0.5"
B.
"P(x<b)=\\int^b_0f(x)dx"
"P(x>b)=1-\\int^b_0f(x)dx"
Then:
"\\int^b_0f(x)dx=1-\\int^b_0f(x)dx"
"2\\int^b_0f(x)dx=2\\int^b_0(6x(1-x))dx=2(3x^2-2x^3)|^b_0=6b^2-4b^3=1"
"b=0.5"
Comments
Leave a comment