The Gauteng chamber of business conducted a survey amongst 17 furniture retailers to identify the percentage of bad debts in each company’s debtors’ book. The bad debts percentages are as follows:
2.2, 4.7, 6.3, 5.8, 5.7, 7.2, 2.6, 2.4, 6.1, 6.8, 2.2, 5.7, 3.4, 6.6, 1.8, 4.4, 5.4
Calculate the Pearson Coefficient of skewness coefficient for percentage of bad debts. Is the data skewed?
For a given set of values
2.2, 4.7, 6.3, 5.8, 5.7, 7.2, 2.6, 2.4, 6.1, 6.8, 2.2, 5.7, 3.4, 6.6, 1.8, 4.4, 5.4
Mean = (2.2 + 4.7 + 6.3 + 5.8 + 5.7 + 7.2 + 2.6 + 2.4 + 6.1 + 6.8 + 2.2 + 5.7 + 3.4 + 6.6 + 1.8 + 4.4 + 5.4)/17
=79.3/17
=4.66470588235
Median =5.4
Variance (σ2)
"=(2.2 - 4.66)^2+ (4.7 - 4.66)^2+ (6.3 - 4.66)^2 + (5.8- 4.66)^2+\\\\(5.7- 4.66)^2+(7.2- 4.66)^2+ (2.6 - 4.66)^2+ (2.4 - 4.66)^2 +\\\\ ( 6.1- 4.66)^2+ (6.8 - 4.66)^2+ ( 2.2 - 4.66)^2 \n+(5.7- 4.66)^2+\\\\ ( 3.4 - 4.66)^2+ (6.6 - 4.66)^2 + ( 1.8- 4.66)^2+ (4.4 - 4.66)^2+ ( 5.4 - 4.66)^2] \/ 17\n\n\n\\\\\n=1.79638237"
standard deviation (σ)
"=\\sqrt{3.22698961925}\\\\\n=1.79638237"
Pearson's Coefficient of Skewness coefficient
"=\\frac{3 (mean- median)}{\u03c3}\\\\\n=\\frac{3 (4.66470588235- 5.4)}{1.79638237}\\\\\n=-1.228"
If skewness is negative, the data are negatively skewed or skewed left.
Comments
Leave a comment