Mean
"\\mu=\\dfrac{5+10+15+20+25}{5}=15"Variance
"\\sigma^2=\\dfrac{1}{5}\\big((5-15)^2+(10-15)^2+(15-15)^2""(20-15)^2+(25-15)^2\\big)=50"
Standard deviation
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{50}=5\\sqrt{2}\\approx7.071068"
We have population values "5,10,15,20,25" population size "N=5" and sample size "n=3." Thus, the number of possible samples which can be drawn with replacement is
"n^r=5^3=125""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample & Sample & Sample \\ mean \\\\\n No. & values & (\\bar{X}) \\\\ \\hline\n 1 & 5,5, 5 & 5 \\\\\n \\hdashline\n 2 & 5,5,10 & 20\/3 \\\\\n \\hdashline\n 3 & 5,5,15 & 25\/3 \\\\\n \\hdashline\n 4 & 5,5,20 & 10 \\\\\n \\hdashline\n 5 & 5,5,25 & 35\/3 \\\\\n \\hline\n6 & 5,10,5 & 20\/3 \\\\\n \\hline\n7 & 5,10,10 & 25\/3 \\\\\n \\hline\n8 & 5,10,15 & 10 \\\\\n \\hline\n9 & 5,10,20 & 35\/3 \\\\\n \\hline\n10 & 5,10,25 & 40\/3 \\\\\n \\hline\n11 & 5,15,5 & 25\/3 \\\\\n \\hline\n12 & 5,15,10 & 10 \\\\\n \\hline\n13 & 5,15,15 & 35\/3 \\\\\n \\hline\n14 & 5,15,20 & 40\/3 \\\\\n \\hline\n15 & 5,15,25 & 15 \\\\\n \\hline\n16 & 5,20,5 & 10 \\\\\n \\hline\n17 & 5,20,10 & 35\/3 \\\\\n \\hline\n18 & 5,20,15 & 40\/3 \\\\\n \\hline\n19 & 5,20,20 & 15 \\\\\n \\hline\n20 & 5,20,25 & 50\/3 \\\\\n \\hline\n21 & 5,25,5 & 35\/3\\\\\n \\hline\n22 & 5,25,10 & 40\/3 \\\\\n \\hline\n23 & 5,25,15 & 15 \\\\\n \\hline\n24 & 5,25,20 & 50\/3 \\\\\n \\hline\n25 & 5,25,25 & 55\/3 \\\\\n \\hline\n26 & 10,5, 5 & 20\/3 \\\\\n \\hdashline\n 27 & 10,5,10 & 25\/3 \\\\\n \\hdashline\n 28 & 10,5,15 & 10 \\\\\n \\hdashline\n 29 & 10,5,20 & 35\/3 \\\\\n \\hdashline\n 30 & 10,5,25 & 40\/3 \\\\\n \\hline\n31 & 10,10,5 & 25\/3 \\\\\n \\hline\n32 & 10,10,10 & 10 \\\\\n \\hline\n33 & 10,10,15 & 35\/3 \\\\\n \\hline\n34 & 10,10,20 & 40\/3 \\\\\n \\hline\n35 & 10,10,25 & 15 \\\\\n \\hline\n36 & 10,15,5 & 10 \\\\\n \\hline\n37 & 10,15,10 & 35\/3\\\\\n \\hline\n38 & 10,15,15 & 40\/3 \\\\\n \\hline\n39 & 10,15,20 & 15 \\\\\n \\hline\n40 & 10,15,25 & 50\/3 \\\\\n \\hline\n41 & 10,20,5 & 35\/3 \\\\\n \\hline\n42 & 10,20,10 & 40\/3 \\\\\n \\hline\n43 & 10,20,15 & 15 \\\\\n \\hline\n44 & 10,20,20 & 50\/3 \\\\\n \\hline\n45 & 10,20,25 & 55\/3 \\\\\n \\hline\n46 & 10,25,5 & 40\/3\\\\\n \\hline\n47 & 10,25,10 & 15 \\\\\n \\hline\n48 & 10,25,15 & 50\/3 \\\\\n \\hline\n49 & 10,25,20 & 55\/3 \\\\\n \\hline\n50 & 10,25,25 & 20 \\\\\n \\hline\n 51 & 15,5, 5 & 25\/3 \\\\\n \\hdashline\n 52 & 15,5,10 & 10 \\\\\n \\hdashline\n 53 & 15,5,15 & 35\/3 \\\\\n \\hdashline\n 54 & 15,5,20 & 40\/3 \\\\\n \\hdashline\n 55 & 15,5,25 & 15 \\\\\n \\hline\n56 & 15,10,5 & 10 \\\\\n \\hline\n57 & 15,10,10 &35\/3 \\\\\n \\hline\n58 & 15,10,15 & 40\/3 \\\\\n \\hline\n59 & 15,10,20 & 15 \\\\\n \\hline\n60 & 15,10,25 & 50\/3 \\\\\n \\hline\n61 & 15,15,5 & 35\/3 \\\\\n \\hline\n62 & 15,15,10 & 40\/3 \\\\\n \\hline\n63 & 15,15,15 & 15 \\\\\n \\hline\n64 & 15,15,20 & 50\/3 \\\\\n \\hline\n65 & 15,15,25 & 55\/3 \\\\\n \\hline\n66 & 15,20,5 & 40\/3 \\\\\n \\hline\n67 & 15,20,10 & 15 \\\\\n \\hline\n68 & 15,20,15 & 50\/3 \\\\\n \\hline\n69 & 15,20,20 & 55\/3 \\\\\n \\hline\n70 & 15,20,25 & 20 \\\\\n \\hline\n71 & 15,25,5 & 15\\\\\n \\hline\n72 & 15,25,10 & 50\/3 \\\\\n \\hline\n73 & 15,25,15 & 55\/3 \\\\\n \\hline\n74 & 15,25,20 & 20 \\\\\n \\hline\n75 & 15,25,25 & 65\/3 \\\\\n \\hline\n76 & 20,5, 5 & 10 \\\\\n \\hdashline\n 77 & 20,5,10 & 35\/3 \\\\\n \\hdashline\n 78 & 20,5,15 & 40\/3 \\\\\n \\hdashline\n 79 & 20,5,20 & 15 \\\\\n \\hdashline\n 80 & 20,5,25 & 50\/3 \\\\\n \\hline\n81 & 20,10,5 & 35\/3 \\\\\n \\hline\n82 & 20,10,10 & 40\/3 \\\\\n \\hline\n83 & 20,10,15 & 15 \\\\\n \\hline\n84 & 20,10,20 & 50\/3 \\\\\n \\hline\n85 & 20,10,25 & 55\/3 \\\\\n \\hline\n86 & 20,15,5 & 40\/3 \\\\\n \\hline\n87 & 20,15,10 & 15\\\\\n \\hline\n88 & 20,15,15 & 50\/3 \\\\\n \\hline\n89 & 20,15,20 & 55\/3 \\\\\n \\hline\n90 & 20,15,25 & 20 \\\\\n \\hline\n91 & 20,20,5 & 15 \\\\\n \\hline\n92 & 20,20,10 & 50\/3 \\\\\n \\hline\n93 & 20,20,15 & 55\/3 \\\\\n \\hline\n94 & 20,20,20 & 20 \\\\\n \\hline\n95 & 20,20,25 & 65\/3 \\\\\n \\hline\n96 & 20,25,5 & 50\/3\\\\\n \\hline\n97 & 20,25,10 & 55\/3 \\\\\n \\hline\n98 & 20,25,15 & 20 \\\\\n \\hline\n99 & 20,25,20 & 65\/3 \\\\\n \\hline\n100 & 20,25,25 & 70\/3 \\\\\n \\hline\n 101 & 25,5, 5 & 35\/3 \\\\\n \\hdashline\n 102 & 25,5,10 & 40\/3 \\\\\n \\hdashline\n 103 & 25,5,15 & 15 \\\\\n \\hdashline\n 104 & 25,5,20 & 50\/3 \\\\\n \\hdashline\n 105 & 25,5,25 & 55\/3 \\\\\n \\hline\n106 & 25,10,5 & 40\/3 \\\\\n \\hline\n107 & 25,10,10 & 15 \\\\\n \\hline\n108 & 25,10,15 & 50\/3 \\\\\n \\hline\n109 & 25,10,20 & 55\/3 \\\\\n \\hline\n110 & 25,10,25 & 20 \\\\\n \\hline\n111 & 25,15,5 & 15 \\\\\n \\hline\n112 & 25,15,10 & 50\/3 \\\\\n \\hline\n113 & 25,15,15 & 55\/3 \\\\\n \\hline\n114 & 25,15,20 & 20 \\\\\n \\hline\n115 & 25,15,25 & 65\/3 \\\\\n \\hline\n116 & 25,20,5 & 50\/3 \\\\\n \\hline\n117 & 25,20,10 & 55\/3 \\\\\n \\hline\n118 & 25,20,15 & 20 \\\\\n \\hline\n119 & 25,20,20 & 65\/3 \\\\\n \\hline\n120 & 25,20,25 & 70\/3 \\\\\n \\hline\n121 & 25,25,5 & 55\/3\\\\\n \\hline\n122 & 25,25,10 & 20 \\\\\n \\hline\n123 & 25,25,15 & 65\/3 \\\\\n \\hline\n124 & 25,25,20 & 70\/3 \\\\\n \\hline\n125 & 25,25,25 & 25 \\\\\n \\hline\n\\end{array}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n 15\/3 & 1& 1\/125 & 3\/75 & 9\/45 \\\\\n \\hdashline\n 20\/3 & 3 & 3\/125 & 12\/75 & 48\/45 \\\\\n \\hdashline\n 25\/3 & 6 & 6\/125 & 30\/75 & 150\/45 \\\\\n \\hdashline\n 30\/3 & 10 & 10\/125 & 60\/75 & 360\/45 \\\\\n \\hdashline\n 35\/3 & 15 & 15\/125 & 105\/75& 735\/45 \\\\\n \\hdashline\n40\/3 & 18 & 18\/125 & 144\/75 & 1152\/45 \\\\\n \\hdashline\n 45\/3 & 19 & 19\/125 & 171\/75 & 1539\/45 \\\\\n \\hdashline\n 50\/3 & 18 & 18\/125 & 180\/75 & 1800\/45 \\\\\n \\hdashline\n 55\/3 & 15 & 15\/125 & 165\/75 & 1815\/45 \\\\\n \\hdashline\n 60\/3 & 10 & 10\/125 & 120\/75 & 1440\/45 \\\\\n \\hdashline\n 65\/3 & 6 & 6\/125 & 78\/75 & 1014\/45 \\\\\n \\hdashline\n 70\/3 & 3 & 3\/125 & 42\/75 & 588\/45 \\\\\n \\hdashline\n 75\/3 & 1& 1\/125 & 15\/75 & 225\/45 \\\\\n \\hdashline\n \n Total & 125 & 1 & 225\/15 & 725\/3 \\\\ \\hline\n\\end{array}"
"E(\\bar{X})=\\sum\\bar{X}f(\\bar{X})=\\dfrac{225}{15}=15"The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
"E(\\bar{X})=15=\\mu"
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
"=\\dfrac{725}{3}-(15)^2=\\dfrac{50}{3}"
"\\sqrt{Var(\\bar{X})}=\\sqrt{\\dfrac{50}{3}}\\approx4.082483"Verification:
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}=\\dfrac{50}{3},True"
Comments
Leave a comment