Mean
μ = 5 + 10 + 15 + 20 + 25 5 = 15 \mu=\dfrac{5+10+15+20+25}{5}=15 μ = 5 5 + 10 + 15 + 20 + 25 = 15 Variance
σ 2 = 1 5 ( ( 5 − 15 ) 2 + ( 10 − 15 ) 2 + ( 15 − 15 ) 2 \sigma^2=\dfrac{1}{5}\big((5-15)^2+(10-15)^2+(15-15)^2 σ 2 = 5 1 ( ( 5 − 15 ) 2 + ( 10 − 15 ) 2 + ( 15 − 15 ) 2 ( 20 − 15 ) 2 + ( 25 − 15 ) 2 ) = 50 (20-15)^2+(25-15)^2\big)=50 ( 20 − 15 ) 2 + ( 25 − 15 ) 2 ) = 50
Standard deviation
σ = σ 2 = 50 = 5 2 ≈ 7.071068 \sigma=\sqrt{\sigma^2}=\sqrt{50}=5\sqrt{2}\approx7.071068 σ = σ 2 = 50 = 5 2 ≈ 7.071068
We have population values 5 , 10 , 15 , 20 , 25 5,10,15,20,25 5 , 10 , 15 , 20 , 25 population size N = 5 N=5 N = 5 and sample size n = 3. n=3. n = 3. Thus, the number of possible samples which can be drawn with replacement is
n r = 5 3 = 125 n^r=5^3=125 n r = 5 3 = 125 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 5 , 5 , 5 5 2 5 , 5 , 10 20 / 3 3 5 , 5 , 15 25 / 3 4 5 , 5 , 20 10 5 5 , 5 , 25 35 / 3 6 5 , 10 , 5 20 / 3 7 5 , 10 , 10 25 / 3 8 5 , 10 , 15 10 9 5 , 10 , 20 35 / 3 10 5 , 10 , 25 40 / 3 11 5 , 15 , 5 25 / 3 12 5 , 15 , 10 10 13 5 , 15 , 15 35 / 3 14 5 , 15 , 20 40 / 3 15 5 , 15 , 25 15 16 5 , 20 , 5 10 17 5 , 20 , 10 35 / 3 18 5 , 20 , 15 40 / 3 19 5 , 20 , 20 15 20 5 , 20 , 25 50 / 3 21 5 , 25 , 5 35 / 3 22 5 , 25 , 10 40 / 3 23 5 , 25 , 15 15 24 5 , 25 , 20 50 / 3 25 5 , 25 , 25 55 / 3 26 10 , 5 , 5 20 / 3 27 10 , 5 , 10 25 / 3 28 10 , 5 , 15 10 29 10 , 5 , 20 35 / 3 30 10 , 5 , 25 40 / 3 31 10 , 10 , 5 25 / 3 32 10 , 10 , 10 10 33 10 , 10 , 15 35 / 3 34 10 , 10 , 20 40 / 3 35 10 , 10 , 25 15 36 10 , 15 , 5 10 37 10 , 15 , 10 35 / 3 38 10 , 15 , 15 40 / 3 39 10 , 15 , 20 15 40 10 , 15 , 25 50 / 3 41 10 , 20 , 5 35 / 3 42 10 , 20 , 10 40 / 3 43 10 , 20 , 15 15 44 10 , 20 , 20 50 / 3 45 10 , 20 , 25 55 / 3 46 10 , 25 , 5 40 / 3 47 10 , 25 , 10 15 48 10 , 25 , 15 50 / 3 49 10 , 25 , 20 55 / 3 50 10 , 25 , 25 20 51 15 , 5 , 5 25 / 3 52 15 , 5 , 10 10 53 15 , 5 , 15 35 / 3 54 15 , 5 , 20 40 / 3 55 15 , 5 , 25 15 56 15 , 10 , 5 10 57 15 , 10 , 10 35 / 3 58 15 , 10 , 15 40 / 3 59 15 , 10 , 20 15 60 15 , 10 , 25 50 / 3 61 15 , 15 , 5 35 / 3 62 15 , 15 , 10 40 / 3 63 15 , 15 , 15 15 64 15 , 15 , 20 50 / 3 65 15 , 15 , 25 55 / 3 66 15 , 20 , 5 40 / 3 67 15 , 20 , 10 15 68 15 , 20 , 15 50 / 3 69 15 , 20 , 20 55 / 3 70 15 , 20 , 25 20 71 15 , 25 , 5 15 72 15 , 25 , 10 50 / 3 73 15 , 25 , 15 55 / 3 74 15 , 25 , 20 20 75 15 , 25 , 25 65 / 3 76 20 , 5 , 5 10 77 20 , 5 , 10 35 / 3 78 20 , 5 , 15 40 / 3 79 20 , 5 , 20 15 80 20 , 5 , 25 50 / 3 81 20 , 10 , 5 35 / 3 82 20 , 10 , 10 40 / 3 83 20 , 10 , 15 15 84 20 , 10 , 20 50 / 3 85 20 , 10 , 25 55 / 3 86 20 , 15 , 5 40 / 3 87 20 , 15 , 10 15 88 20 , 15 , 15 50 / 3 89 20 , 15 , 20 55 / 3 90 20 , 15 , 25 20 91 20 , 20 , 5 15 92 20 , 20 , 10 50 / 3 93 20 , 20 , 15 55 / 3 94 20 , 20 , 20 20 95 20 , 20 , 25 65 / 3 96 20 , 25 , 5 50 / 3 97 20 , 25 , 10 55 / 3 98 20 , 25 , 15 20 99 20 , 25 , 20 65 / 3 100 20 , 25 , 25 70 / 3 101 25 , 5 , 5 35 / 3 102 25 , 5 , 10 40 / 3 103 25 , 5 , 15 15 104 25 , 5 , 20 50 / 3 105 25 , 5 , 25 55 / 3 106 25 , 10 , 5 40 / 3 107 25 , 10 , 10 15 108 25 , 10 , 15 50 / 3 109 25 , 10 , 20 55 / 3 110 25 , 10 , 25 20 111 25 , 15 , 5 15 112 25 , 15 , 10 50 / 3 113 25 , 15 , 15 55 / 3 114 25 , 15 , 20 20 115 25 , 15 , 25 65 / 3 116 25 , 20 , 5 50 / 3 117 25 , 20 , 10 55 / 3 118 25 , 20 , 15 20 119 25 , 20 , 20 65 / 3 120 25 , 20 , 25 70 / 3 121 25 , 25 , 5 55 / 3 122 25 , 25 , 10 20 123 25 , 25 , 15 65 / 3 124 25 , 25 , 20 70 / 3 125 25 , 25 , 25 25 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 5,5, 5 & 5 \\
\hdashline
2 & 5,5,10 & 20/3 \\
\hdashline
3 & 5,5,15 & 25/3 \\
\hdashline
4 & 5,5,20 & 10 \\
\hdashline
5 & 5,5,25 & 35/3 \\
\hline
6 & 5,10,5 & 20/3 \\
\hline
7 & 5,10,10 & 25/3 \\
\hline
8 & 5,10,15 & 10 \\
\hline
9 & 5,10,20 & 35/3 \\
\hline
10 & 5,10,25 & 40/3 \\
\hline
11 & 5,15,5 & 25/3 \\
\hline
12 & 5,15,10 & 10 \\
\hline
13 & 5,15,15 & 35/3 \\
\hline
14 & 5,15,20 & 40/3 \\
\hline
15 & 5,15,25 & 15 \\
\hline
16 & 5,20,5 & 10 \\
\hline
17 & 5,20,10 & 35/3 \\
\hline
18 & 5,20,15 & 40/3 \\
\hline
19 & 5,20,20 & 15 \\
\hline
20 & 5,20,25 & 50/3 \\
\hline
21 & 5,25,5 & 35/3\\
\hline
22 & 5,25,10 & 40/3 \\
\hline
23 & 5,25,15 & 15 \\
\hline
24 & 5,25,20 & 50/3 \\
\hline
25 & 5,25,25 & 55/3 \\
\hline
26 & 10,5, 5 & 20/3 \\
\hdashline
27 & 10,5,10 & 25/3 \\
\hdashline
28 & 10,5,15 & 10 \\
\hdashline
29 & 10,5,20 & 35/3 \\
\hdashline
30 & 10,5,25 & 40/3 \\
\hline
31 & 10,10,5 & 25/3 \\
\hline
32 & 10,10,10 & 10 \\
\hline
33 & 10,10,15 & 35/3 \\
\hline
34 & 10,10,20 & 40/3 \\
\hline
35 & 10,10,25 & 15 \\
\hline
36 & 10,15,5 & 10 \\
\hline
37 & 10,15,10 & 35/3\\
\hline
38 & 10,15,15 & 40/3 \\
\hline
39 & 10,15,20 & 15 \\
\hline
40 & 10,15,25 & 50/3 \\
\hline
41 & 10,20,5 & 35/3 \\
\hline
42 & 10,20,10 & 40/3 \\
\hline
43 & 10,20,15 & 15 \\
\hline
44 & 10,20,20 & 50/3 \\
\hline
45 & 10,20,25 & 55/3 \\
\hline
46 & 10,25,5 & 40/3\\
\hline
47 & 10,25,10 & 15 \\
\hline
48 & 10,25,15 & 50/3 \\
\hline
49 & 10,25,20 & 55/3 \\
\hline
50 & 10,25,25 & 20 \\
\hline
51 & 15,5, 5 & 25/3 \\
\hdashline
52 & 15,5,10 & 10 \\
\hdashline
53 & 15,5,15 & 35/3 \\
\hdashline
54 & 15,5,20 & 40/3 \\
\hdashline
55 & 15,5,25 & 15 \\
\hline
56 & 15,10,5 & 10 \\
\hline
57 & 15,10,10 &35/3 \\
\hline
58 & 15,10,15 & 40/3 \\
\hline
59 & 15,10,20 & 15 \\
\hline
60 & 15,10,25 & 50/3 \\
\hline
61 & 15,15,5 & 35/3 \\
\hline
62 & 15,15,10 & 40/3 \\
\hline
63 & 15,15,15 & 15 \\
\hline
64 & 15,15,20 & 50/3 \\
\hline
65 & 15,15,25 & 55/3 \\
\hline
66 & 15,20,5 & 40/3 \\
\hline
67 & 15,20,10 & 15 \\
\hline
68 & 15,20,15 & 50/3 \\
\hline
69 & 15,20,20 & 55/3 \\
\hline
70 & 15,20,25 & 20 \\
\hline
71 & 15,25,5 & 15\\
\hline
72 & 15,25,10 & 50/3 \\
\hline
73 & 15,25,15 & 55/3 \\
\hline
74 & 15,25,20 & 20 \\
\hline
75 & 15,25,25 & 65/3 \\
\hline
76 & 20,5, 5 & 10 \\
\hdashline
77 & 20,5,10 & 35/3 \\
\hdashline
78 & 20,5,15 & 40/3 \\
\hdashline
79 & 20,5,20 & 15 \\
\hdashline
80 & 20,5,25 & 50/3 \\
\hline
81 & 20,10,5 & 35/3 \\
\hline
82 & 20,10,10 & 40/3 \\
\hline
83 & 20,10,15 & 15 \\
\hline
84 & 20,10,20 & 50/3 \\
\hline
85 & 20,10,25 & 55/3 \\
\hline
86 & 20,15,5 & 40/3 \\
\hline
87 & 20,15,10 & 15\\
\hline
88 & 20,15,15 & 50/3 \\
\hline
89 & 20,15,20 & 55/3 \\
\hline
90 & 20,15,25 & 20 \\
\hline
91 & 20,20,5 & 15 \\
\hline
92 & 20,20,10 & 50/3 \\
\hline
93 & 20,20,15 & 55/3 \\
\hline
94 & 20,20,20 & 20 \\
\hline
95 & 20,20,25 & 65/3 \\
\hline
96 & 20,25,5 & 50/3\\
\hline
97 & 20,25,10 & 55/3 \\
\hline
98 & 20,25,15 & 20 \\
\hline
99 & 20,25,20 & 65/3 \\
\hline
100 & 20,25,25 & 70/3 \\
\hline
101 & 25,5, 5 & 35/3 \\
\hdashline
102 & 25,5,10 & 40/3 \\
\hdashline
103 & 25,5,15 & 15 \\
\hdashline
104 & 25,5,20 & 50/3 \\
\hdashline
105 & 25,5,25 & 55/3 \\
\hline
106 & 25,10,5 & 40/3 \\
\hline
107 & 25,10,10 & 15 \\
\hline
108 & 25,10,15 & 50/3 \\
\hline
109 & 25,10,20 & 55/3 \\
\hline
110 & 25,10,25 & 20 \\
\hline
111 & 25,15,5 & 15 \\
\hline
112 & 25,15,10 & 50/3 \\
\hline
113 & 25,15,15 & 55/3 \\
\hline
114 & 25,15,20 & 20 \\
\hline
115 & 25,15,25 & 65/3 \\
\hline
116 & 25,20,5 & 50/3 \\
\hline
117 & 25,20,10 & 55/3 \\
\hline
118 & 25,20,15 & 20 \\
\hline
119 & 25,20,20 & 65/3 \\
\hline
120 & 25,20,25 & 70/3 \\
\hline
121 & 25,25,5 & 55/3\\
\hline
122 & 25,25,10 & 20 \\
\hline
123 & 25,25,15 & 65/3 \\
\hline
124 & 25,25,20 & 70/3 \\
\hline
125 & 25,25,25 & 25 \\
\hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 S am pl e v a l u es 5 , 5 , 5 5 , 5 , 10 5 , 5 , 15 5 , 5 , 20 5 , 5 , 25 5 , 10 , 5 5 , 10 , 10 5 , 10 , 15 5 , 10 , 20 5 , 10 , 25 5 , 15 , 5 5 , 15 , 10 5 , 15 , 15 5 , 15 , 20 5 , 15 , 25 5 , 20 , 5 5 , 20 , 10 5 , 20 , 15 5 , 20 , 20 5 , 20 , 25 5 , 25 , 5 5 , 25 , 10 5 , 25 , 15 5 , 25 , 20 5 , 25 , 25 10 , 5 , 5 10 , 5 , 10 10 , 5 , 15 10 , 5 , 20 10 , 5 , 25 10 , 10 , 5 10 , 10 , 10 10 , 10 , 15 10 , 10 , 20 10 , 10 , 25 10 , 15 , 5 10 , 15 , 10 10 , 15 , 15 10 , 15 , 20 10 , 15 , 25 10 , 20 , 5 10 , 20 , 10 10 , 20 , 15 10 , 20 , 20 10 , 20 , 25 10 , 25 , 5 10 , 25 , 10 10 , 25 , 15 10 , 25 , 20 10 , 25 , 25 15 , 5 , 5 15 , 5 , 10 15 , 5 , 15 15 , 5 , 20 15 , 5 , 25 15 , 10 , 5 15 , 10 , 10 15 , 10 , 15 15 , 10 , 20 15 , 10 , 25 15 , 15 , 5 15 , 15 , 10 15 , 15 , 15 15 , 15 , 20 15 , 15 , 25 15 , 20 , 5 15 , 20 , 10 15 , 20 , 15 15 , 20 , 20 15 , 20 , 25 15 , 25 , 5 15 , 25 , 10 15 , 25 , 15 15 , 25 , 20 15 , 25 , 25 20 , 5 , 5 20 , 5 , 10 20 , 5 , 15 20 , 5 , 20 20 , 5 , 25 20 , 10 , 5 20 , 10 , 10 20 , 10 , 15 20 , 10 , 20 20 , 10 , 25 20 , 15 , 5 20 , 15 , 10 20 , 15 , 15 20 , 15 , 20 20 , 15 , 25 20 , 20 , 5 20 , 20 , 10 20 , 20 , 15 20 , 20 , 20 20 , 20 , 25 20 , 25 , 5 20 , 25 , 10 20 , 25 , 15 20 , 25 , 20 20 , 25 , 25 25 , 5 , 5 25 , 5 , 10 25 , 5 , 15 25 , 5 , 20 25 , 5 , 25 25 , 10 , 5 25 , 10 , 10 25 , 10 , 15 25 , 10 , 20 25 , 10 , 25 25 , 15 , 5 25 , 15 , 10 25 , 15 , 15 25 , 15 , 20 25 , 15 , 25 25 , 20 , 5 25 , 20 , 10 25 , 20 , 15 25 , 20 , 20 25 , 20 , 25 25 , 25 , 5 25 , 25 , 10 25 , 25 , 15 25 , 25 , 20 25 , 25 , 25 S am pl e m e an ( X ˉ ) 5 20/3 25/3 10 35/3 20/3 25/3 10 35/3 40/3 25/3 10 35/3 40/3 15 10 35/3 40/3 15 50/3 35/3 40/3 15 50/3 55/3 20/3 25/3 10 35/3 40/3 25/3 10 35/3 40/3 15 10 35/3 40/3 15 50/3 35/3 40/3 15 50/3 55/3 40/3 15 50/3 55/3 20 25/3 10 35/3 40/3 15 10 35/3 40/3 15 50/3 35/3 40/3 15 50/3 55/3 40/3 15 50/3 55/3 20 15 50/3 55/3 20 65/3 10 35/3 40/3 15 50/3 35/3 40/3 15 50/3 55/3 40/3 15 50/3 55/3 20 15 50/3 55/3 20 65/3 50/3 55/3 20 65/3 70/3 35/3 40/3 15 50/3 55/3 40/3 15 50/3 55/3 20 15 50/3 55/3 20 65/3 50/3 55/3 20 65/3 70/3 55/3 20 65/3 70/3 25
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 15 / 3 1 1 / 125 3 / 75 9 / 45 20 / 3 3 3 / 125 12 / 75 48 / 45 25 / 3 6 6 / 125 30 / 75 150 / 45 30 / 3 10 10 / 125 60 / 75 360 / 45 35 / 3 15 15 / 125 105 / 75 735 / 45 40 / 3 18 18 / 125 144 / 75 1152 / 45 45 / 3 19 19 / 125 171 / 75 1539 / 45 50 / 3 18 18 / 125 180 / 75 1800 / 45 55 / 3 15 15 / 125 165 / 75 1815 / 45 60 / 3 10 10 / 125 120 / 75 1440 / 45 65 / 3 6 6 / 125 78 / 75 1014 / 45 70 / 3 3 3 / 125 42 / 75 588 / 45 75 / 3 1 1 / 125 15 / 75 225 / 45 T o t a l 125 1 225 / 15 725 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
15/3 & 1& 1/125 & 3/75 & 9/45 \\
\hdashline
20/3 & 3 & 3/125 & 12/75 & 48/45 \\
\hdashline
25/3 & 6 & 6/125 & 30/75 & 150/45 \\
\hdashline
30/3 & 10 & 10/125 & 60/75 & 360/45 \\
\hdashline
35/3 & 15 & 15/125 & 105/75& 735/45 \\
\hdashline
40/3 & 18 & 18/125 & 144/75 & 1152/45 \\
\hdashline
45/3 & 19 & 19/125 & 171/75 & 1539/45 \\
\hdashline
50/3 & 18 & 18/125 & 180/75 & 1800/45 \\
\hdashline
55/3 & 15 & 15/125 & 165/75 & 1815/45 \\
\hdashline
60/3 & 10 & 10/125 & 120/75 & 1440/45 \\
\hdashline
65/3 & 6 & 6/125 & 78/75 & 1014/45 \\
\hdashline
70/3 & 3 & 3/125 & 42/75 & 588/45 \\
\hdashline
75/3 & 1& 1/125 & 15/75 & 225/45 \\
\hdashline
Total & 125 & 1 & 225/15 & 725/3 \\ \hline
\end{array} X ˉ 15/3 20/3 25/3 30/3 35/3 40/3 45/3 50/3 55/3 60/3 65/3 70/3 75/3 T o t a l f 1 3 6 10 15 18 19 18 15 10 6 3 1 125 f ( X ˉ ) 1/125 3/125 6/125 10/125 15/125 18/125 19/125 18/125 15/125 10/125 6/125 3/125 1/125 1 X ˉ f ( X ˉ ) 3/75 12/75 30/75 60/75 105/75 144/75 171/75 180/75 165/75 120/75 78/75 42/75 15/75 225/15 X ˉ 2 f ( X ˉ ) 9/45 48/45 150/45 360/45 735/45 1152/45 1539/45 1800/45 1815/45 1440/45 1014/45 588/45 225/45 725/3
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 225 15 = 15 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{225}{15}=15 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 15 225 = 15 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 15 = μ E(\bar{X})=15=\mu E ( X ˉ ) = 15 = μ
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 725 3 − ( 15 ) 2 = 50 3 =\dfrac{725}{3}-(15)^2=\dfrac{50}{3} = 3 725 − ( 15 ) 2 = 3 50
V a r ( X ˉ ) = 50 3 ≈ 4.082483 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{50}{3}}\approx4.082483 Va r ( X ˉ ) = 3 50 ≈ 4.082483 Verification:
V a r ( X ˉ ) = σ 2 n = 50 3 , T r u e Var(\bar{X})=\dfrac{\sigma^2}{n}=\dfrac{50}{3},True Va r ( X ˉ ) = n σ 2 = 3 50 , T r u e
Comments
Leave a comment