Question #199407

A poll is taken among residents of a city and its suburbs to determine the feasibilities of 

a proposal to construct a civic center. If 6𝒐𝒇 πŸ“πŸŽ city residents favor the proposal and 

6 𝒐𝒇 πŸ•πŸŽ suburban residents favor it, find a πŸ—πŸ“% confidence interval for the true 

difference between the proportion of city and suburban residents who favor the proposal 

to construct the civic center.


1
Expert's answer
2021-06-01T01:42:24-0400

City Residents (p1):n1=50 , x1=6  ; p^1=x1n1=650=0.12(p_1):n_1=50\ ,\ x_1=6\ \ ; \ \hat p_1=\dfrac{x_1}{n_1}=\dfrac{6}{50}=0.12


Suburban Residents (p2):n2=70  ;x2=6  ;p^2=x2n2=670=0.086(p_2):n_2=70\ \ ;x_2=6\ \ ; \hat p_2=\dfrac{x_2}{n_2}=\dfrac{6}{70}=0.086


The 95% confidence level zΞ±/2=1.96z_{\alpha/2}=1.96


Margin of error (E)=zΞ±/2p^1(1βˆ’p^1)n1+p^2(1βˆ’p^2)n2(E)=z_{\alpha/2}\sqrt{\dfrac{\hat p_1(1-\hat p_1)}{n_1}+\dfrac{\hat p_2(1-\hat p_2)}{n_2}}


E=1.96β‹…0.12Γ—0.8850+0.086Γ—0.91470=1.96Γ—0.0578=0.1133E=1.96\cdot \sqrt{\dfrac{0.12\times 0.88}{50}+\dfrac{0.086\times 0.914}{70}}=1.96\times 0.0578=0.1133


Lower limit = (p^1βˆ’p^2)βˆ’E=(0.12βˆ’0.086)βˆ’0.1133=βˆ’0.0793(\hat p_1-\hat p_2)-E=(0.12-0.086)-0.1133=-0.0793


Upper limit = Eβˆ’(p^2βˆ’p^1)=0.1133βˆ’(0.086βˆ’0.12)=0.1473E-(\hat p_2-\hat p_1)=0.1133-(0.086-0.12)=0.1473


So, confidence interval =(βˆ’0.0793,0.1473)=(-0.0793,0.1473)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS