A poll is taken among residents of a city and its suburbs to determine the feasibilities of
a proposal to construct a civic center. If 6𝒐𝒇 𝟓𝟎 city residents favor the proposal and
6 𝒐𝒇 𝟕𝟎 suburban residents favor it, find a 𝟗𝟓% confidence interval for the true
difference between the proportion of city and suburban residents who favor the proposal
to construct the civic center.
City Residents "(p_1):n_1=50\\ ,\\ x_1=6\\ \\ ;\n \\ \\hat p_1=\\dfrac{x_1}{n_1}=\\dfrac{6}{50}=0.12"
Suburban Residents "(p_2):n_2=70\\ \\ ;x_2=6\\ \\ ; \\hat p_2=\\dfrac{x_2}{n_2}=\\dfrac{6}{70}=0.086"
The 95% confidence level "z_{\\alpha\/2}=1.96"
Margin of error "(E)=z_{\\alpha\/2}\\sqrt{\\dfrac{\\hat p_1(1-\\hat p_1)}{n_1}+\\dfrac{\\hat p_2(1-\\hat p_2)}{n_2}}"
"E=1.96\\cdot \\sqrt{\\dfrac{0.12\\times 0.88}{50}+\\dfrac{0.086\\times 0.914}{70}}=1.96\\times 0.0578=0.1133"
Lower limit = "(\\hat p_1-\\hat p_2)-E=(0.12-0.086)-0.1133=-0.0793"
Upper limit = "E-(\\hat p_2-\\hat p_1)=0.1133-(0.086-0.12)=0.1473"
So, confidence interval "=(-0.0793,0.1473)"
Comments
Leave a comment