(b) (i) A random variable 'X' has the density function:
f(x) = K. — in- < x <
(b) Probability density function of the random variable XXX is given by:
f(x)=Kx(2−x)f(x)=Kx(2-x)f(x)=Kx(2−x) , 0<x<2\ 0<x<2 0<x<2
We know that for p.d.fp.d.fp.d.f ,
∫−∞∞f(x)dx=1\int _{-\infty}^{\infty} f(x)dx=1∫−∞∞f(x)dx=1
⇒∫02Kx(2−x)dx=1\Rightarrow \int _ {0}^{2} Kx(2-x)dx=1⇒∫02Kx(2−x)dx=1
⇒K⋅∫02(2x−x2)dx=1\Rightarrow K\cdot\int _ {0}^{2}(2x-x^2)dx=1⇒K⋅∫02(2x−x2)dx=1
⇒K⋅∣2.x22−x33∣02=1\Rightarrow K\cdot |2.\frac{x^2}{2}-\frac {x^3}{3}|_{0}^{2}=1⇒K⋅∣2.2x2−3x3∣02=1
⇒K⋅[4−83]=1\Rightarrow K\cdot[4-\frac{8}{3}]=1⇒K⋅[4−38]=1
⇒K=34\Rightarrow K=\dfrac{3}{4}\\⇒K=43
Hence the value of K is K=34\boxed{K=\dfrac{3}{4}}K=43
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment