The average public elementary school has 468 students with a standard deviation of 87. If a random sample of 38 public elementary schools is selected, what is the probability that the number of students enrolled is between 445 and 485?
P(445<Xˉ<485)=P(445−4688738<Z<485−4688738)=P(445<\bar X<485)=P(\frac{445-468}{\frac{87}{\sqrt{38}}}<Z<\frac{485-468}{\frac{87}{\sqrt{38}}})=P(445<Xˉ<485)=P(3887445−468<Z<3887485−468)=
=P(−1.63<Z<1.20)=P(Z<1.20)−P(Z<−1.63)==P(-1.63<Z<1.20)=P(Z<1.20)-P(Z<-1.63)==P(−1.63<Z<1.20)=P(Z<1.20)−P(Z<−1.63)=
=P(Z<1.20)−1+P(Z<1.63)=0.8849−1+0.9484=0.8333.=P(Z<1.20)-1+P(Z<1.63)=0.8849-1+0.9484=0.8333.=P(Z<1.20)−1+P(Z<1.63)=0.8849−1+0.9484=0.8333.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment