1) The following data is obtained from a research
a) Find the best equation fitting this data by using regression analyses method
b) Find the correlation coefficient of the equation
c) Find the y value for the x=5.5
X Y
5 784
10 1043
15 1666
20 2478
25 4060
30 6069
"\\bar{Y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nY_i=\\dfrac{16100}{6}=2683.333333"
"SS_{XX}=\\displaystyle\\sum_{i=1}^nX_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)^2"
"=2275-\\dfrac{105^2}{6}=437.5"
"SS_{YY}=\\displaystyle\\sum_{i=1}^nY_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nY_i)^2"
"=63934906-\\dfrac{16100^2}{6}=20733239.333333"
"SS_{XY}=\\displaystyle\\sum_{i=1}^nX_iY_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\displaystyle\\sum_{i=1}^nY_i)"
"=372470-\\dfrac{105\\times16100}{6}=90720"
"n=\\bar{Y}-m\\cdot \\bar{X}=2683.333333.2-207.36\\cdot17.5"
"=\u2212945.466667"
The regression equation is:
b)
"=\\dfrac{90720}{\\sqrt{437.5}\\sqrt{20733239.333333}}\\approx0.952534"
"0.7<0.952534\\leq1"
Strong positive correlation,
c)
"X=5.5"
"Y=\u2212945.466667+207.36(5.5)=195"
Comments
Leave a comment