Given x1 = 3, x2 = 4, x3 = 8, x4 = -2, y1 = -6, y2 = 1, y3 = 5 and y4 = 0, find the value of the following:
Given,
x1=3,x2=4,x3=8,x4=−2y1=−6,y2=1,y3=5,y4=0x_1=3,x_2=4,x_3=8,x_4=-2\\y_1=-6,y_2=1,y_3=5,y_4=0x1=3,x2=4,x3=8,x4=−2y1=−6,y2=1,y3=5,y4=0
So, ∑i=14xiyi=∑(x1y1+x2y2+x3y3+x4y4)\sum_{i=1}^4 x_i y_i=\sum(x_1y_1+x_2y_2+x_3y_3+x_4y_4)∑i=14xiyi=∑(x1y1+x2y2+x3y3+x4y4)
=(3)(−6)+(4)(1)+8(5)+(−2)(0)=−18+4+40=26=(3)(-6)+(4)(1)+8(5)+(-2)(0)\\=-18+4+40\\=26=(3)(−6)+(4)(1)+8(5)+(−2)(0)=−18+4+40=26
Hence, ∑i=14xiyi=26\sum_{i=1}^4 x_i y_i=26∑i=14xiyi=26
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments