If x has the probability function 𝑓(𝑥) = 𝑘/2^x for x=0,1,2,……… then determine the followings
a) Vale of k
b) P(x≥ 4)
By definition,
∑x=0∞k2x=1=k∑x=0∞12x=k⋅2\displaystyle \sum_{x=0}^\infty \frac{k}{2^x} = 1 = k\sum_{x=0}^\infty \frac{1}{2^x} = k \cdot 2x=0∑∞2xk=1=kx=0∑∞2x1=k⋅2
k=1/2k=1/2k=1/2
P(X≥4)=1−P(X<4)=1−12∑x=0312x=1−12⋅158=1−1516=116\displaystyle P(X \geq 4) = 1 - P(X < 4) = 1 - \frac{1}{2}\sum_{x=0}^3 \frac{1}{2^x}= 1 - \frac{1}{2} \cdot \frac{15}{8} = 1 - \frac{15}{16} = \frac{1}{16}P(X≥4)=1−P(X<4)=1−21x=0∑32x1=1−21⋅815=1−1615=161
Answer: k=1/2;P(X≥4)=1/16.k=1/2; P(X\geq 4) = 1/16.k=1/2;P(X≥4)=1/16.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments