Question #186885

A secretary makes 2 errors per page, on average. What is the probability that on the next page she will make (a) 3 or more errors; (b) no errors?


1
Expert's answer
2021-05-07T09:42:55-0400

Average error per page λ=2\lambda=2


Let X denote the number of Errors.


(a) P(X3)=1P(X<3)P(X\ge3)=1-P(X<3)


=1[P(X=0)+P(X=1)+P(X=2)]=1-[P(X=0)+P(X=1)+P(X=2)]\\


=1[eλ.λ00!+eλ.λ11!+eλ.λ22!]=1-[\dfrac{e^{-\lambda}.\lambda^0}{0!}+\dfrac{e^{-\lambda}.\lambda^1}{1!}+\dfrac{e^{-\lambda}.\lambda^2}{2!}]


=1[e2.200!+e2.211!+e2.222!]=1-[\dfrac{e^{-2}.2^0}{0!}+\dfrac{e^{-2}.2^1}{1!}+\dfrac{e^{-2}.2^2}{2!}]


=1(0.135+0.2706+0.2706)=10.6764=0.3236=1-(0.135+0.2706+0.2706)\\=1-0.6764\\=0.3236


(b) P(X=0)=eλ.λ00!P(X=0)=\dfrac{e^{-\lambda}.\lambda^0}{0!}

=e2.200!=0.135=\dfrac{e^{-2}.2^0}{0!} =0.135


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS