A secretary makes 2 errors per page, on average. What is the probability that on the next page she will make (a) 3 or more errors; (b) no errors?
Average error per page "\\lambda=2"
Let X denote the number of Errors.
(a) "P(X\\ge3)=1-P(X<3)"
"=1-[P(X=0)+P(X=1)+P(X=2)]\\\\"
"=1-[\\dfrac{e^{-\\lambda}.\\lambda^0}{0!}+\\dfrac{e^{-\\lambda}.\\lambda^1}{1!}+\\dfrac{e^{-\\lambda}.\\lambda^2}{2!}]"
"=1-[\\dfrac{e^{-2}.2^0}{0!}+\\dfrac{e^{-2}.2^1}{1!}+\\dfrac{e^{-2}.2^2}{2!}]"
"=1-(0.135+0.2706+0.2706)\\\\=1-0.6764\\\\=0.3236"
(b) "P(X=0)=\\dfrac{e^{-\\lambda}.\\lambda^0}{0!}"
"=\\dfrac{e^{-2}.2^0}{0!}\n\n =0.135"
Comments
Leave a comment