A sample size 25 is picked up at random from a population which is normally distributed with a mean of 100 and variance of 36. Calculate:-
(a) Pr{ ͞X≤99}
(b) Pr{98≤ ͞X≤100}
n=25μ=100σ=36σ=6n = 25 \\ \mu=100 \\ \sigma^ = 36 \\ \sigma = 6n=25μ=100σ=36σ=6
(a)
z=Xˉ−μσ/nP(Xˉ≤99)=P(Z≤99−1006/25)=P(Z≤−0.8333)=0.2024z = \frac{\bar{X}- \mu}{\sigma / \sqrt{n}} \\ P(\bar{X} ≤ 99) = P(Z≤ \frac{99 -100}{6/ \sqrt{25}} )\\ = P(Z≤ -0.8333) \\ = 0.2024z=σ/nXˉ−μP(Xˉ≤99)=P(Z≤6/2599−100)=P(Z≤−0.8333)=0.2024
(b)
P(98≤Xˉ≤100)=P(Xˉ≤100)−P(Xˉ≤98)=P(Z≤100−1006/25)−P(Z≤98−1006/25)=P(Z≤0)−P(Z≤−1.666)=0.5−0.0478=0.4522P(98≤\bar{X} ≤ 100) = P(\bar{X}≤100) -P(\bar{X}≤98) \\ = P(Z≤ \frac{100-100}{6/ \sqrt{25}}) -P(Z≤ \frac{98-100}{6/ \sqrt{25}} )\\ = P(Z≤ 0) -P(Z≤ -1.666) \\ = 0.5 -0.0478 \\ = 0.4522P(98≤Xˉ≤100)=P(Xˉ≤100)−P(Xˉ≤98)=P(Z≤6/25100−100)−P(Z≤6/2598−100)=P(Z≤0)−P(Z≤−1.666)=0.5−0.0478=0.4522
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment