A sample size 25 is picked up at random from a population which is normally distributed with a mean of 100 and variance of 36. Calculate:-
(a) Pr{ ͞X≤99}
(b) Pr{98≤ ͞X≤100}
"n = 25 \\\\\n\n\\mu=100 \\\\\n\n\\sigma^ = 36 \\\\\n\\sigma = 6"
(a)
"z = \\frac{\\bar{X}- \\mu}{\\sigma \/ \\sqrt{n}} \\\\\n\nP(\\bar{X} \u2264 99) = P(Z\u2264 \\frac{99 -100}{6\/ \\sqrt{25}} )\\\\\n\n= P(Z\u2264 -0.8333) \\\\\n\n= 0.2024"
(b)
"P(98\u2264\\bar{X} \u2264 100) = P(\\bar{X}\u2264100) -P(\\bar{X}\u226498) \\\\\n\n= P(Z\u2264 \\frac{100-100}{6\/ \\sqrt{25}}) -P(Z\u2264 \\frac{98-100}{6\/ \\sqrt{25}} )\\\\\n\n= P(Z\u2264 0) -P(Z\u2264 -1.666) \\\\\n\n= 0.5 -0.0478 \\\\\n\n= 0.4522"
Comments
Leave a comment