Question #179891

If Y=aX+b, show that Y has the same coefficient of skewness?


1
Expert's answer
2021-04-14T01:48:52-0400

The skewness of a random variable X is the third standardized moment, defined as μ~3(X)=σ(X)3E[(Xμ(X))3]\tilde{\mu}^3(X)=\sigma(X)^{-3}E[(X-\mu(X))^3] , where μ(X), σ(X)\mu(X),\ \sigma(X) are the mean and the standard deviation of X. If Y=aX+bY=aX+b, then

μ(Y)=E(aX+b)=aμ(X)+b\mu(Y)=E(aX+b)=a\mu(X)+b

Var(Y)=E((Yμ(Y))2)=E((aX+b(aμ(X)+b))2)=a2E((Xμ(X))2)=a2Var(X)Var(Y)=E((Y-\mu(Y))^2)=E((aX+b-(a\mu(X)+b))^2)=a^2E((X-\mu(X))^2)=a^2Var(X)

σ(Y)=Var(Y)=a2Var(X)=aσ(X)\sigma(Y)=\sqrt{Var(Y)}=\sqrt{a^2Var(X)}=|a|\sigma(X)

μ~3(Y)=σ(Y)3E[(Yμ(Y))3]=a3σ(X)3E[(aX+b(aμ(X)+b))3]=a3a3E((Xμ(X))3)=sign(a)μ~3(X)\tilde{\mu}^3(Y)=\sigma(Y)^{-3}E[(Y-\mu(Y))^3]=|a|^{-3}\sigma(X)^{-3}E[(aX+b-(a\mu(X)+b))^3]=\frac{a^3}{|a|^3}E((X-\mu(X))^3)=\mathrm{sign}(a) \tilde{\mu}^3(X)

Therefore, if a>0, then Y has the same coefficient of skewness as X. If a<0 then X, Y have the same absolute values of the coefficient of skewness, but their signs are different.

If a=0, then the coefficient of skewness of Y is undefined.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS