(i) normal distribution
Previously find mean and standard deviation
E[X]=np=100⋅0.1=10
σ[X]=np(1−p)=100⋅0.1⋅0.9=9=3
P(10≤X≤12)=
F(σ[X]12−E[X])−F(σ[X]10−E[X])=
F(312−10)−F(310−10)=
F(32)−F(0)≈0.7486−0.5000=0.2486
(ii) Poisson distribution
Previously find parameter of Poisson distribution
λ=np=100⋅0.1=10
Formula for Poisson probability is
P(k)=k!λke−λ
P(10≤X≤12)=
P(0)+P(1)+…+P(10)+P(11)+P(12)−(P(0)+P(1)+…+P(10))=
P(11)+P(12)=
11!1011⋅e−10+12!1012⋅e−10=
11!1011⋅e−10+11!⋅121011⋅10⋅e−10=
11!1011⋅e−10(1+1210)=
11!1011⋅e−10(1+65)=
11!1011⋅e−10⋅611≈0.2085
Comments