(i) normal distribution
Previously find mean and standard deviation
E [ X ] = n p = 100 ⋅ 0.1 = 10 \bold{E}[X]=np=100\cdot0.1=10 E [ X ] = n p = 100 ⋅ 0.1 = 10
σ [ X ] = n p ( 1 − p ) = 100 ⋅ 0.1 ⋅ 0.9 = 9 = 3 \sigma[X]=\sqrt{np(1-p)}=\sqrt{100\cdot0.1\cdot0.9}=\sqrt{9}=3 σ [ X ] = n p ( 1 − p ) = 100 ⋅ 0.1 ⋅ 0.9 = 9 = 3
P ( 10 ≤ X ≤ 12 ) = P (10\leq X\leq12)= P ( 10 ≤ X ≤ 12 ) =
F ( 12 − E [ X ] σ [ X ] ) − F ( 10 − E [ X ] σ [ X ] ) = F\left(\dfrac{12-\bold{E}[X]}{\sigma[X]}\right)-F\left(\dfrac{10-\bold{E}[X]}{\sigma[X]}\right)= F ( σ [ X ] 12 − E [ X ] ) − F ( σ [ X ] 10 − E [ X ] ) =
F ( 12 − 10 3 ) − F ( 10 − 10 3 ) = F\left(\dfrac{12-10}{3}\right)-F\left(\dfrac{10-10}{3}\right)= F ( 3 12 − 10 ) − F ( 3 10 − 10 ) =
F ( 2 3 ) − F ( 0 ) ≈ 0.7486 − 0.5000 = 0.2486 F\left(\dfrac{2}{3}\right)-F(0)\approx0.7486-0.5000=0.2486 F ( 3 2 ) − F ( 0 ) ≈ 0.7486 − 0.5000 = 0.2486
(ii) Poisson distribution
Previously find parameter of Poisson distribution
λ = n p = 100 ⋅ 0.1 = 10 \lambda=np=100\cdot0.1=10 λ = n p = 100 ⋅ 0.1 = 10
Formula for Poisson probability is
P ( k ) = λ k e − λ k ! P(k)=\dfrac{\lambda^ke^{-\lambda}}{k!} P ( k ) = k ! λ k e − λ
P ( 10 ≤ X ≤ 12 ) = P (10\leq X\leq12)= P ( 10 ≤ X ≤ 12 ) =
P ( 0 ) + P ( 1 ) + … + P ( 10 ) + P ( 11 ) + P ( 12 ) − ( P ( 0 ) + P ( 1 ) + … + P ( 10 ) ) = P(0)+P(1)+\ldots+P(10)+P(11)+P(12)-\bigg(P(0)+P(1)+\ldots+P(10)\bigg)= P ( 0 ) + P ( 1 ) + … + P ( 10 ) + P ( 11 ) + P ( 12 ) − ( P ( 0 ) + P ( 1 ) + … + P ( 10 ) ) =
P ( 11 ) + P ( 12 ) = P(11)+P(12)= P ( 11 ) + P ( 12 ) =
1 0 11 ⋅ e − 10 11 ! + 1 0 12 ⋅ e − 10 12 ! = \dfrac{10^{11}\cdot e^{-10}}{11!}+\dfrac{10^{12}\cdot e^{-10}}{12!}= 11 ! 1 0 11 ⋅ e − 10 + 12 ! 1 0 12 ⋅ e − 10 =
1 0 11 ⋅ e − 10 11 ! + 1 0 11 ⋅ 10 ⋅ e − 10 11 ! ⋅ 12 = \dfrac{10^{11}\cdot e^{-10}}{11!}+\dfrac{10^{11}\cdot 10\cdot e^{-10}}{11!\cdot12}= 11 ! 1 0 11 ⋅ e − 10 + 11 ! ⋅ 12 1 0 11 ⋅ 10 ⋅ e − 10 =
1 0 11 ⋅ e − 10 11 ! ( 1 + 10 12 ) = \dfrac{10^{11}\cdot e^{-10}}{11!}\left(1+\dfrac{10}{12}\right)= 11 ! 1 0 11 ⋅ e − 10 ( 1 + 12 10 ) =
1 0 11 ⋅ e − 10 11 ! ( 1 + 5 6 ) = \dfrac{10^{11}\cdot e^{-10}}{11!}\left(1+\dfrac{5}{6}\right)= 11 ! 1 0 11 ⋅ e − 10 ( 1 + 6 5 ) =
1 0 11 ⋅ e − 10 11 ! ⋅ 11 6 ≈ 0.2085 \dfrac{10^{11}\cdot e^{-10}}{11!}\cdot\dfrac{11}{6}\approx0.2085 11 ! 1 0 11 ⋅ e − 10 ⋅ 6 11 ≈ 0.2085
Comments