Question #179628

) Let X be a binomial variate with n =100, p = .1.0 Find the approximate value of

P 10( ≤ X ≤12) using: (5) 

 (i) normal distribution 

 (ii)poisson distribution 

 [You may like to use the following values. 

 P(Z ≤ 67.0 ) = .0 7486, P(Z ≤ 33.0 ) = .0 6293, P(Z ≤ )0 = ]


1
Expert's answer
2021-04-29T16:57:08-0400

(i) normal distribution


 Previously find mean and standard deviation

E[X]=np=1000.1=10\bold{E}[X]=np=100\cdot0.1=10

σ[X]=np(1p)=1000.10.9=9=3\sigma[X]=\sqrt{np(1-p)}=\sqrt{100\cdot0.1\cdot0.9}=\sqrt{9}=3


P(10X12)=P (10\leq X\leq12)=


F(12E[X]σ[X])F(10E[X]σ[X])=F\left(\dfrac{12-\bold{E}[X]}{\sigma[X]}\right)-F\left(\dfrac{10-\bold{E}[X]}{\sigma[X]}\right)=


F(12103)F(10103)=F\left(\dfrac{12-10}{3}\right)-F\left(\dfrac{10-10}{3}\right)=


F(23)F(0)0.74860.5000=0.2486F\left(\dfrac{2}{3}\right)-F(0)\approx0.7486-0.5000=0.2486


(ii) Poisson distribution 


Previously find parameter of Poisson distribution

λ=np=1000.1=10\lambda=np=100\cdot0.1=10


Formula for Poisson probability is

P(k)=λkeλk!P(k)=\dfrac{\lambda^ke^{-\lambda}}{k!}



P(10X12)=P (10\leq X\leq12)=


P(0)+P(1)++P(10)+P(11)+P(12)(P(0)+P(1)++P(10))=P(0)+P(1)+\ldots+P(10)+P(11)+P(12)-\bigg(P(0)+P(1)+\ldots+P(10)\bigg)=


P(11)+P(12)=P(11)+P(12)=


1011e1011!+1012e1012!=\dfrac{10^{11}\cdot e^{-10}}{11!}+\dfrac{10^{12}\cdot e^{-10}}{12!}=


1011e1011!+101110e1011!12=\dfrac{10^{11}\cdot e^{-10}}{11!}+\dfrac{10^{11}\cdot 10\cdot e^{-10}}{11!\cdot12}=


1011e1011!(1+1012)=\dfrac{10^{11}\cdot e^{-10}}{11!}\left(1+\dfrac{10}{12}\right)=


1011e1011!(1+56)=\dfrac{10^{11}\cdot e^{-10}}{11!}\left(1+\dfrac{5}{6}\right)=


1011e1011!1160.2085\dfrac{10^{11}\cdot e^{-10}}{11!}\cdot\dfrac{11}{6}\approx0.2085




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS