) Let X be a binomial variate with n =100, p = .1.0 Find the approximate value of
P 10( ≤ X ≤12) using: (5)
(i) normal distribution
(ii)poisson distribution
[You may like to use the following values.
P(Z ≤ 67.0 ) = .0 7486, P(Z ≤ 33.0 ) = .0 6293, P(Z ≤ )0 = ]
(i) normal distribution
Previously find mean and standard deviation
"\\bold{E}[X]=np=100\\cdot0.1=10"
"\\sigma[X]=\\sqrt{np(1-p)}=\\sqrt{100\\cdot0.1\\cdot0.9}=\\sqrt{9}=3"
"P (10\\leq X\\leq12)="
"F\\left(\\dfrac{12-\\bold{E}[X]}{\\sigma[X]}\\right)-F\\left(\\dfrac{10-\\bold{E}[X]}{\\sigma[X]}\\right)="
"F\\left(\\dfrac{12-10}{3}\\right)-F\\left(\\dfrac{10-10}{3}\\right)="
"F\\left(\\dfrac{2}{3}\\right)-F(0)\\approx0.7486-0.5000=0.2486"
(ii) Poisson distribution
Previously find parameter of Poisson distribution
"\\lambda=np=100\\cdot0.1=10"
Formula for Poisson probability is
"P(k)=\\dfrac{\\lambda^ke^{-\\lambda}}{k!}"
"P (10\\leq X\\leq12)="
"P(0)+P(1)+\\ldots+P(10)+P(11)+P(12)-\\bigg(P(0)+P(1)+\\ldots+P(10)\\bigg)="
"P(11)+P(12)="
"\\dfrac{10^{11}\\cdot e^{-10}}{11!}+\\dfrac{10^{12}\\cdot e^{-10}}{12!}="
"\\dfrac{10^{11}\\cdot e^{-10}}{11!}+\\dfrac{10^{11}\\cdot 10\\cdot e^{-10}}{11!\\cdot12}="
"\\dfrac{10^{11}\\cdot e^{-10}}{11!}\\left(1+\\dfrac{10}{12}\\right)="
"\\dfrac{10^{11}\\cdot e^{-10}}{11!}\\left(1+\\dfrac{5}{6}\\right)="
"\\dfrac{10^{11}\\cdot e^{-10}}{11!}\\cdot\\dfrac{11}{6}\\approx0.2085"
Comments
Leave a comment