D and N are equally likely to occur.
Then we have binomial distribution with parameters
p=21
n=3
Denote probability for k defective test kits as P(X=k).
Then
P(X=k)=(kn)pk(1−p)n−k
Probabilities for each k are
P(X=0)=(03)⋅(21)0⋅(21)3= 0!3!3!⋅81=81
P(X=1)=(13)⋅(21)1⋅(21)2= 1!2!3!⋅81=83
P(X=2)=(23)⋅(21)2⋅(21)1= 2!1!3!⋅81=83
P(X=3)=(33)⋅(21)3⋅(21)0= 3!0!3!⋅81=81
Check the sum of probabilities
k=0∑3P(X=k)=81+83+83+81=1
Construct the probability distribution
XP(X=k)081183283381
Comments
Leave a comment