Answer to Question #179836 in Statistics and Probability for Karen joy

Question #179836

suppose three test kits are tested at random. let D represent the defective test kit and let N represent the non defective test kit. if we let x be the random variable for the number of defective test kits, construct the probability distribution of the random variable X


1
Expert's answer
2021-04-29T16:58:27-0400

DD and NN are equally likely to occur.

Then we have binomial distribution with parameters


p=12p=\dfrac{1}{2}


n=3n=3


Denote probability for kk defective test kits as P(X=k)P(X=k).

Then


P(X=k)=(nk)pk(1p)nkP(X=k)=\dbinom{n}{k}p^k(1-p)^{n-k}


Probabilities for each kk are


P(X=0)=(30)(12)0(12)3=P(X=0)=\dbinom{3}{0}\cdot\left(\dfrac{1}{2}\right)^0\cdot\left(\dfrac{1}{2}\right)^3= 3!0!3!18=18\dfrac{3!}{0!3!}\cdot\dfrac{1}{8}=\dfrac{1}{8}


P(X=1)=(31)(12)1(12)2=P(X=1)=\dbinom{3}{1}\cdot\left(\dfrac{1}{2}\right)^1\cdot\left(\dfrac{1}{2}\right)^2= 3!1!2!18=38\dfrac{3!}{1!2!}\cdot\dfrac{1}{8}=\dfrac{3}{8}


P(X=2)=(32)(12)2(12)1=P(X=2)=\dbinom{3}{2}\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(\dfrac{1}{2}\right)^1= 3!2!1!18=38\dfrac{3!}{2!1!}\cdot\dfrac{1}{8}=\dfrac{3}{8}


P(X=3)=(33)(12)3(12)0=P(X=3)=\dbinom{3}{3}\cdot\left(\dfrac{1}{2}\right)^3\cdot\left(\dfrac{1}{2}\right)^0= 3!3!0!18=18\dfrac{3!}{3!0!}\cdot\dfrac{1}{8}=\dfrac{1}{8}


Check the sum of probabilities


k=03P(X=k)=18+38+38+18=1\displaystyle\sum\limits_{k=0}^3P(X=k)=\dfrac{1}{8}+\dfrac{3}{8}+\dfrac{3}{8}+\dfrac{1}{8}=1


Construct the probability distribution


X0123P(X=k)18383818\begin{array}{|c|c|c|c|c|}\hline \\X&0&1&2&3\\ \\ \hline \\P(X=k)&\dfrac{1}{8}&\dfrac{3}{8}&\dfrac{3}{8}&\dfrac{1}{8}\\ \\\hline\end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment