Calculate the pearson correlation coefficient for the following data
X 7 2 8 4 5
Y 4 4 7 6 7
The Pearson correlation coefficient formula is given below,
"r=\\frac{n(\\Sigma XY)-(\\Sigma X)(\\Sigma Y)}{\\sqrt{[n\\Sigma X^2-(\\Sigma X)^2][n\\Sigma Y^2-(\\Sigma Y)^2]}}", where "n=" sample size
To find Pearson correlation coefficient of the given data, we first calculate the following table
Here "n=5" .
"\\therefore" "r=\\frac{n(\\Sigma XY)-(\\Sigma X)(\\Sigma Y)}{\\sqrt{[n\\Sigma X^2-(\\Sigma X)^2][n\\Sigma Y^2-(\\Sigma Y)^2]}}" "=\\frac{(5\u00d7151)-(26\u00d728)}{\\sqrt{[(5\u00d7158)-(26)^2].[(5\u00d7166)-(28)^2]}}" "=\\frac {27}{\\sqrt {5244}}=0.37" (approximately)
Comments
Leave a comment