The Pearson correlation coefficient formula is given below,
r = n ( Σ X Y ) − ( Σ X ) ( Σ Y ) [ n Σ X 2 − ( Σ X ) 2 ] [ n Σ Y 2 − ( Σ Y ) 2 ] r=\frac{n(\Sigma XY)-(\Sigma X)(\Sigma Y)}{\sqrt{[n\Sigma X^2-(\Sigma X)^2][n\Sigma Y^2-(\Sigma Y)^2]}} r = [ n Σ X 2 − ( Σ X ) 2 ] [ n Σ Y 2 − ( Σ Y ) 2 ] n ( Σ X Y ) − ( Σ X ) ( Σ Y ) , where n = n= n = sample size
To find Pearson correlation coefficient of the given data, we first calculate the following table
Here n = 5 n=5 n = 5 .
∴ \therefore ∴ r = n ( Σ X Y ) − ( Σ X ) ( Σ Y ) [ n Σ X 2 − ( Σ X ) 2 ] [ n Σ Y 2 − ( Σ Y ) 2 ] r=\frac{n(\Sigma XY)-(\Sigma X)(\Sigma Y)}{\sqrt{[n\Sigma X^2-(\Sigma X)^2][n\Sigma Y^2-(\Sigma Y)^2]}} r = [ n Σ X 2 − ( Σ X ) 2 ] [ n Σ Y 2 − ( Σ Y ) 2 ] n ( Σ X Y ) − ( Σ X ) ( Σ Y ) = ( 5 × 151 ) − ( 26 × 28 ) [ ( 5 × 158 ) − ( 26 ) 2 ] . [ ( 5 × 166 ) − ( 28 ) 2 ] =\frac{(5×151)-(26×28)}{\sqrt{[(5×158)-(26)^2].[(5×166)-(28)^2]}} = [( 5 × 158 ) − ( 26 ) 2 ] . [( 5 × 166 ) − ( 28 ) 2 ] ( 5 × 151 ) − ( 26 × 28 ) = 27 5244 = 0.37 =\frac {27}{\sqrt {5244}}=0.37 = 5244 27 = 0.37 (approximately)
Comments