Question #161453

The random variable X represents the number of heads that occur when you toss 4 coins at the same time what is the probability distribution



1
Expert's answer
2021-02-24T07:58:09-0500

Four coins are tossed. Therefore sample space contain 242^4 i.e 1616 points.

Let SS be the sample space.

Then S=S= { HHHH,HHHT,HHTH,HHTT,HTHH,HTHT,HTTH,HTTTHHHH,HHHT,HHTH,HHTT,HTHH,HTHT,HTTH,HTTT

THHH,THHT,THTH,THTT,TTHH,TTHT,TTTH,TTTTTHHH,THHT,THTH,THTT,TTHH,TTHT,TTTH,TTTT }

Let XX be the random variable representing the number of heads that occur.

Then XX can take the values 0,1,2,3,4.0,1,2,3,4.

Now corresponding to each points of random variable ZZ we will get their probabilities.

P(X=0)=\therefore P(X=0)= ​probability of getting no head

=116=\frac{1}{16}

P(X=1)=P(X=1)= probability of getting one head

=416=14=\frac{4}{16}=\frac{1}{4}

P(X=2)=P(X=2)= probability of getting two head

=616=38=\frac{6}{16}=\frac{3}{8}

P(X=3)=P(X=3)= probability of getting three head

=416=14=\frac{4}{16}=\frac{1}{4}

P(X=4)=P(X=4)= probability of getting four head

=116=\frac{1}{16}

Let F(x)F(x) be the distribution function of the random variable XX .

If <x<0,-\infty<x<0, F(x)=0F(x)=0

If 0x<1,0\leq x<1, F(x)=P(X=0)=116F(x)=P(X=0)=\frac{1}{16} If 1x<2,F(x)=[P(X=0)+P(X=1)]=(116+416)=5161\leq x<2, F(x)=[P(X=0)+P(X=1)]=(\frac{1}{16}+\frac{4}{16})=\frac{5}{16}

If 2x<3,F(x)=[P(X=0)+P(X=1)+P(X=2)]=(116+416+616)=11162\leq x<3, F(x)=[P(X=0)+P(X=1)+P(X=2)]=(\frac{1}{16}+\frac{4}{16}+\frac{6}{16})=\frac{11}{16}

If 3x<4,F(x)=[P(X=0)+P(X=1)+P(X=2)+P(X=3)]=(116+416+616+416)=15163\leq x<4, F(x)=[P(X=0)+P(X=1)+P(X=2)+P(X=3)]=(\frac{1}{16}+\frac{4}{16}+\frac{6}{16}+\frac{4}{16})=\frac{15}{16}

If 4x<,F(x)=[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)]4\leq x<\infty , F(x)=[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)]

=(116+416+616+416+116)=1=(\frac{1}{16}+\frac{4}{16}+\frac{6}{16}+\frac{4}{16}+\frac{1}{16})=1

Which is the required distribution function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS