Question #161302

Four coins are tossed. Let Y be the random variable that represents the number tail that will occur. Find the values of random variable Y.


1
Expert's answer
2021-02-24T06:53:34-0500

The possible number of tails is: 0,1,2,3,4. Those are the values that YY can take.

In order to compute the respective probabilities we will use the binomial distribution. We assume that the probability of a tail and the probability of a head are equal. We receive:

P(Y=0)=(12)4=116;P(Y=1)=C41(12)4=4(12)4=14;P(Y=0)=\left(\frac{1}{2}\right)^4=\frac{1}{16};P(Y=1)=C_4^1\left(\frac{1}{2}\right)^4=4\left(\frac{1}{2}\right)^4=\frac{1}{4};

P(Y=2)=C42(12)4=342(12)4=38;P(Y=3)=C43(12)4=14P(Y=2)=C_4^2\left(\frac{1}{2}\right)^4=\frac{3\cdot4}{2}\left(\frac{1}{2}\right)^4=\frac{3}{8}; P(Y=3)=C_4^3\left(\frac{1}{2}\right)^4=\frac{1}{4};

P(Y=4)=C44(12)4=116P(Y=4)=C_4^4\left(\frac{1}{2}\right)^4=\frac{1}{16}

We check that the sum of all probabilities is 1: P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)+P(Y=4)=P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)+P(Y=4)=

116+116+14+14+38=12+12=1\frac{1}{16}+\frac{1}{16}+\frac{1}{4}+\frac{1}{4}+\frac{3}{8}=\frac{1}{2}+\frac{1}{2}=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS