Four coins are tossed. Let Y be the random variable that represents the number tail that will occur. Find the values of random variable Y.
The possible number of tails is: 0,1,2,3,4. Those are the values that "Y" can take.
In order to compute the respective probabilities we will use the binomial distribution. We assume that the probability of a tail and the probability of a head are equal. We receive:
"P(Y=0)=\\left(\\frac{1}{2}\\right)^4=\\frac{1}{16};P(Y=1)=C_4^1\\left(\\frac{1}{2}\\right)^4=4\\left(\\frac{1}{2}\\right)^4=\\frac{1}{4};"
"P(Y=2)=C_4^2\\left(\\frac{1}{2}\\right)^4=\\frac{3\\cdot4}{2}\\left(\\frac{1}{2}\\right)^4=\\frac{3}{8}; P(Y=3)=C_4^3\\left(\\frac{1}{2}\\right)^4=\\frac{1}{4}";
"P(Y=4)=C_4^4\\left(\\frac{1}{2}\\right)^4=\\frac{1}{16}"
We check that the sum of all probabilities is 1: "P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)+P(Y=4)="
"\\frac{1}{16}+\\frac{1}{16}+\\frac{1}{4}+\\frac{1}{4}+\\frac{3}{8}=\\frac{1}{2}+\\frac{1}{2}=1"
Comments
Leave a comment